Open Access
Issue
ESAIM: M2AN
Volume 56, Number 3, May-June 2022
Page(s) 969 - 1005
DOI https://doi.org/10.1051/m2an/2022028
Published online 25 April 2022
  1. A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 68 (1994) 189–213. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  3. D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer. Series in Computational Methods in Mechanics and Thermal Sciences. Hemisphere Publishing Corp, Washington, DC; McGraw-Hill Book Co., New York (1984). [Google Scholar]
  4. F. Armero and J.C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. [CrossRef] [Google Scholar]
  5. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229–246. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  7. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1. Math. Comput. 71 (2002) 147–156. [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  9. C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comput. 71 (2002) 157–163. [Google Scholar]
  10. Z. Cheng, N. Takahashi and B. Forghani, Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering. Science Press, Beijing (2009). [Google Scholar]
  11. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  12. M. Costabel and M. Dauge, Singularities of Maxwell’s equations on polyhedral domains. In: Analysis, Numerics and Applications of Differential and Integral Equations (Stuttgart, 1996). Vol. 379 of Pitman Res. Notes Math. Ser. Longman, Harlow (1998) 69–76. [Google Scholar]
  13. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. [Google Scholar]
  14. M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93 (2002) 239–277. [Google Scholar]
  15. M. Dauge, Singularities of corner problems and problems of corner singularities. In: Actes du 30ème Congrès d’Analyse Numérique: CANum ‘98 (Arles, 1998). Vol. 6 of ESAIM Proc. Soc. Math. Appl. Indust. Paris (1999) 19–40. [Google Scholar]
  16. P.A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001). [CrossRef] [Google Scholar]
  17. X. Dong and Y. He, Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics. Comput. Math. Appl. 76 (2018) 2678–2700. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. [Google Scholar]
  19. H. Gao and W. Qiu, A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346 (2019) 982–1001. [CrossRef] [Google Scholar]
  20. J.-F. Gerbeau and C. Le Bris, Comparison between two numerical methods for a magnetostatic problem. Calcolo 37 (2000) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). [CrossRef] [Google Scholar]
  22. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). [Google Scholar]
  23. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  24. C. Greif, D. Li, D. Schötzau and X. Wei, A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199 (2010) 2840–2855. [CrossRef] [Google Scholar]
  25. J.L. Guermond and P.D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Part. Differ. Equ. 19 (2003) 709–731. [CrossRef] [Google Scholar]
  26. M.D. Gunzburger, A.J. Meir and J.S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comp. 56 (1991) 523–563. [Google Scholar]
  27. Y. He, Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [Google Scholar]
  29. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [Google Scholar]
  30. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Hiptmair, L. Li, S. Mao and W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28 (2018) 659–695. [CrossRef] [MathSciNet] [Google Scholar]
  32. K. Hu, Y. Ma and J. Xu, Stable finite element methods preserving ∇ ⋅ B = 0 exactly for MHD models. Numer. Math. 135 (2017) 371–396. [CrossRef] [MathSciNet] [Google Scholar]
  33. B. Huang and Y. Liao, Global stability of combination of viscous contact wave with rarefaction wave for compressible Navier-Stokes equations with temperature-dependent viscosity. Math. Models Methods Appl. Sci. 27 (2017) 2321–2379. [CrossRef] [MathSciNet] [Google Scholar]
  34. H. Kurose, D. Miyagi, N. Takahashi, N. Uchida and K. Kawanaka, 3-d eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteristics. IEEE Trans. Magnetics 45 (2009) 1847–1850. [CrossRef] [Google Scholar]
  35. W. Layton, H. Tran and C. Trenchea, Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number. In: Recent Advances in Scientific Computing and Applications. Vol. 586 of Contemp. Math. Amer. Math. Soc., Providence, RI (2013) 231–238. [CrossRef] [Google Scholar]
  36. A.E. Lifschitz, Magnetohydrodynamics and Spectral Theory. Vol. 4 of Developments in Electromagnetic Theory and Applications. Kluwer Academic Publishers Group, Dordrecht (1989). [CrossRef] [Google Scholar]
  37. S.A. Lorca and J.L. Boldrini, Stationary solutions for generalized Boussinesq models. J. Differ. Equ. 124 (1996) 389–406. [CrossRef] [Google Scholar]
  38. S.A. Lorca and J.L. Boldrini, The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36 (1999) 457–480. [CrossRef] [MathSciNet] [Google Scholar]
  39. A.J. Meir, Thermally coupled, stationary, incompressible MHD flow; existence, uniqueness, and finite element approximation. Numer. Methods Part. Differ. Equ. 11 (1995) 311–337. [CrossRef] [Google Scholar]
  40. A.J. Meir and P.G. Schmidt, On electromagnetically and thermally driven liquid-metal flows. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000). Vol. 47 (2000) 3281–3294. [Google Scholar]
  41. P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). [Google Scholar]
  42. R. Moreau, Magnetohydrodynamics. Vol. 3 of Fluid Mechanics and its Applications. Translated from the French by A.F. Wright. Kluwer Academic Publishers Group, Dordrecht (1990). [CrossRef] [Google Scholar]
  43. S. Nadeem and N.S. Akbar, Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3950–3964. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  45. A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. [CrossRef] [EDP Sciences] [Google Scholar]
  46. H. Qiu, Error analysis of euler semi-implicit scheme for the nonstationary magneto-hydrodynamics problem with temperature dependent parameters. J. Sci. Comput. 85 (2020) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  47. S.S. Ravindran, Partitioned time-stepping scheme for an MHD system with temperature-dependent coefficients. IMA J. Numer. Anal. 39 (2019) 1860–1887. [CrossRef] [MathSciNet] [Google Scholar]
  48. D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96 (2004) 771–800. [CrossRef] [MathSciNet] [Google Scholar]
  49. M. Sermange and R. Temam, Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36 (1983) 635–664. [CrossRef] [MathSciNet] [Google Scholar]
  50. D. Shi and Z. Yu, Nonconforming mixed finite element methods for stationary incompressible magnetohydrodynamics. Int. J. Numer. Anal. Model. 10 (2013) 904–919. [MathSciNet] [Google Scholar]
  51. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  52. M. Tabata, Finite element approximation to infinite prandtl number boussinesq equations with temperature-dependent coefficients – thermal convection problems in a spherical shell. Future Generation Comput. Syst. 22 (2006) 521–531. [CrossRef] [Google Scholar]
  53. M. Tabata and D. Tagami, Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Japan J. Indust. Appl. Math. 17 (2000) 371–389. [CrossRef] [MathSciNet] [Google Scholar]
  54. M. Tabata and D. Tagami, Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005) 351–372. [Google Scholar]
  55. M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics. Math. Comp. 69 (2000) 83–101. [Google Scholar]
  56. L.-B. Zhang, A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2 (2009) 65–89. [MathSciNet] [Google Scholar]
  57. L. Zhang, T. Cui and H. Liu, A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27 (2009) 89–96. [MathSciNet] [Google Scholar]
  58. G.-D. Zhang, J. Yang and C. Bi, Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44 (2018) 505–540. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you