Open Access
Volume 56, Number 4, July-August 2022
Page(s) 1223 - 1253
Published online 27 June 2022
  1. J. Alberty, C. Carstensen, S.A. Funken and R. Klose, Matlab implementation of the finite element method in elasticity. Computing 69 (2002) 239–263. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Almi and S. Belz, Consistent finite-dimensional approximation of phase-field models of fracture. Ann. Mat. Pura Appl. 198 (2019) 1191–1225. [CrossRef] [MathSciNet] [Google Scholar]
  3. H.W. Alt, Linear Functional Analysis: An Application-Oriented Introduction. Springer (2016). [CrossRef] [Google Scholar]
  4. H. Attouch, Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program (1984). [Google Scholar]
  5. F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Methods Appl. Sci. 18 (2008) 125–164. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Bartels, M. Milicevic and M. Thomas, Numerical approach to a model for quasistatic damage with spatial BV-regularization. In: Trends in Applications of Mathematics to Mechanics. Springer (2018) 179–203. [CrossRef] [Google Scholar]
  7. G. Bonfanti, A vanishing viscosity approach to a two degree-of-freedom contact problem in linear elasticity with friction. Annali dell’Universita di Ferrara 42 (1996) 127–154. [CrossRef] [Google Scholar]
  8. B.J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models. Tech. Mech. 28 (2008) 43–52. [Google Scholar]
  9. M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
  10. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 2006 (2006) 55–91. [CrossRef] [Google Scholar]
  11. A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Part. Differ. Equ. 22 (2005) 129–172. [CrossRef] [Google Scholar]
  12. K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. [Google Scholar]
  13. R. Herzog, C. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382 (2011) 802–813. [Google Scholar]
  14. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [Google Scholar]
  15. D. Knees, Convergence analysis of time-discretisation schemes for rate-independent systems. ESAIM: Control Optim. Calc. Var. 25 (2019) 65. [CrossRef] [EDP Sciences] [Google Scholar]
  16. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. [Google Scholar]
  17. D. Knees, R. Rossi and C. Zanini, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains. Nonlinear Anal. Real World Appl. 24 (2015) 126–162. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Mainik, A rate-independent model for phase transformations in shape-memory alloys. Ph.D. thesis, Universität Stuttgart (2004). [Google Scholar]
  19. A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlin. Sci. 19 (2009) 221–248. [Google Scholar]
  20. J.A.C. Martins, M.D.P. Monteiro Marques and F. Gastaldi, On an example of non-existence of solution to a quasistatic frictional contact problem. Eur. J. Mech. A Solids 13 (1994) 113–133. [Google Scholar]
  21. J.A.C. Martins, F.M.F. Simões, F. Gastaldi and M.D.P. Monteiro Marques, Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem. Int. J. Eng. Sci. 33 (1995) 1959–1986. [CrossRef] [Google Scholar]
  22. C. Meyer and M. Sievers, Finite element discretization of local minimization schemes for rate-independent evolutions. Calcolo 56 (2019) 1–38. [Google Scholar]
  23. C. Meyer and L.M. Susu, Analysis of a viscous two-field gradient damage model II: Penalization limit. Zeitschrift für Analysis und ihre Anwendungen 38 (2019) 439–474. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application. Springer, New York (2015). [CrossRef] [Google Scholar]
  25. A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13 (2014) 67–135. [MathSciNet] [Google Scholar]
  26. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Continuous Dyn. Syst. A 25 (2009) 585–615. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. (JEMS) 18 (2016) 2107–2165. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Negri, Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM Control Optim. Calc. Var. 20 (2014) 983–1008. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  29. M. Negri and R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal. Real World Appl. 38 (2017) 271–305. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Sievers, A numerical scheme for rate-independent systems – analysis and realization. Ph.D. thesis, Technische Universität Dortmund (2020). [Google Scholar]
  31. U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47 (2008) 1615–1642. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you