Open Access
Issue |
ESAIM: M2AN
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 1199 - 1222 | |
DOI | https://doi.org/10.1051/m2an/2022043 | |
Published online | 27 June 2022 |
- C. Abert, G. Hrkac, M. Page, D. Praetorius, M. Ruggeri and D. Suess, Spin-polarized transport in ferromagnetic multilayers: an unconditionally convergent FEM integrator. Comput. Math. Appl. 68 (2014) 639–654. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- F. Alouges, A new finite element scheme for Landau-Lifchitz equations. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 187–196. [MathSciNet] [Google Scholar]
- F. Alouges and P. Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equation in micromagnetism. Math. Models Methods Appl. Sci. 16 (2006) 299–316. [CrossRef] [MathSciNet] [Google Scholar]
- F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18 (1992) 1071–1084. [CrossRef] [MathSciNet] [Google Scholar]
- F. Alouges, E. Kritsikis, J. Steiner and J.-C. Toussaint, A convergent and precise finite element scheme for Landau–Lifschitz–Gilbert equation. Numer. Math. 128 (2014) 407–430. [CrossRef] [MathSciNet] [Google Scholar]
- R. An, Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation. J. Sci. Comput. 69 (2016) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43 (2005) 220–238. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bartels, Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47 (2009) 3486–3506. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bartels, Fast and accurate finite element approximation of wave maps into spheres. ESAIM: Math. Model. Numer. Anal. 49 (2015) 551–558. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47 of Springer Series in Computational Mathematics. Springer (2015). [Google Scholar]
- S. Bartels, Projection-free approximation of geometrically constrained partial differential equations. Math. Comp. 85 (2016) 1033–1049. [Google Scholar]
- S. Bartels and A. Prohl, Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 44 (2006) 1405–1419. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bartels, X. Feng and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2007) 61–87. [Google Scholar]
- S. Bartels, J. Ko and A. Prohl, Numerical analysis of an explicit approximation scheme for the Landau–Lifshitz–Gilbert equation. Math. Comp. 77 (2008) 773–788. [Google Scholar]
- S. Bartels, C. Lubich and A. Prohl, Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp. 78 (2009) 1269–1292. [CrossRef] [MathSciNet] [Google Scholar]
- E. Beaurepaire, J.-C. Merle, A. Daunois and J.-Y. Bigot, Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76 (1996) 4250–4253. [CrossRef] [PubMed] [Google Scholar]
- F. Bruckner, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, M. Ruggeri and D. Suess, Multiscale modeling in micromagnetics: Existence of solutions and numerical integration. Math. Models Methods Appl. Sci. 24 (2014) 2627–2662. [CrossRef] [MathSciNet] [Google Scholar]
- G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529–1546. [CrossRef] [MathSciNet] [Google Scholar]
- M.-C. Ciornei, J.M. Rubí and J.-E. Wegrowe, Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys. Rev. B 83 (2011) 020410. [CrossRef] [Google Scholar]
- G. Di Fratta, Micromagnetics of curved thin films, Z. Angew. Math. Phys. 71 (2020) 111. [CrossRef] [Google Scholar]
- G. Di Fratta, C.-M. Pfeiler, D. Praetorius, M. Ruggeri and B. Stiftner, Linear second order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation. IMA J. Numer. Anal. 40 (2020) 2802–2838. [CrossRef] [MathSciNet] [Google Scholar]
- M. Feischl and T. Tran, The Eddy Current–LLG equations: FEM-BEM coupling and a priori error estimates. SIAM J. Numer. Anal. 55 (2017) 1786–1819. [CrossRef] [MathSciNet] [Google Scholar]
- H. Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52 (2014) 2574–2593. [CrossRef] [MathSciNet] [Google Scholar]
- G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. A 453 (1997) 213–223. [CrossRef] [Google Scholar]
- M. Hadda and M. Tilioua, On magnetization dynamics with inertial effects. J. Eng. Math. 88 (2014) 197–206. [CrossRef] [Google Scholar]
- G. Hrkac, C.-M. Pfeiler, D. Praetorius, M. Ruggeri, A. Segatti and B. Stiftner, Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics. Adv. Comput. Math. 45 (2019) 1329–1368. [CrossRef] [MathSciNet] [Google Scholar]
- T.K. Karper and F. Weber, A new angular momentum method for computing wave maps into spheres. SIAM J. Numer. Anal. 52 (2014) 2073–2091. [CrossRef] [MathSciNet] [Google Scholar]
- E. Kim and J. Wilkening, Convergence of a mass-lumped finite element method for the Landau-Lifshitz equation. Quart. Appl. Math. 76 (2018) 383–405. [Google Scholar]
- S. Korotov, M. Křížek and P. Neittaanmaki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70 (2001) 107–119. [Google Scholar]
- F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008). [CrossRef] [Google Scholar]
- M. Moumni and M. Tilioua, A finite-difference scheme for a model of magnetization dynamics with inertial effects. J. Eng. Math. 100 (2016) 95–106. [CrossRef] [Google Scholar]
- K. Neeraj, N. Awari, S. Kovalev, D. Polley, N.Z. Hagström, S.S. Arekapudi, A. Semisalova, K. Lenz, B. Green, J.-C. Deinert, I. Ilyakov, M. Chen, M. Bawatna, V. Scalera, M. d’Aquino, C. Serpico, O. Hellwig, J.-E. Wegrowe, M. Gensch and S. Bonetti, Inertial spin dynamics in ferromagnets. Nat. Phys. 17 (2021) 245–250. [CrossRef] [MathSciNet] [Google Scholar]
- NIST, Micromagnetic modeling activity group website. http://www.ctcms.nist.gov/~rdm/mumag.html. Accessed on November 25, 2020. [Google Scholar]
- D. Praetorius, M. Ruggeri and B. Stiftner, Convergence of an implicit–explicit midpoint scheme for computational micromagnetics. Comput. Math. Appl. 75 (2018) 1719–1738. [CrossRef] [MathSciNet] [Google Scholar]
- D. Tataru, The wave maps equation. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 185–204. [CrossRef] [MathSciNet] [Google Scholar]
- J. Walowski and M. Münzenberg, Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. 120 (2016) 140901. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.