Open Access
Volume 56, Number 4, July-August 2022
Page(s) 1173 - 1198
Published online 27 June 2022
  1. R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. [Google Scholar]
  2. T. Apel, S. Nicaise and J. Pfefferer, Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains. Numer. Meth. Part. Diff. Equ. 32 (2016) 1433–1454. [CrossRef] [Google Scholar]
  3. W. Arendt and K. Urban, Partial Differential Equations: An Analytic and Numerical Approach. Springer (2022) to appear. Translated from the German by J.B. Kennedy. [Google Scholar]
  4. I. Babuška, J. Osborn and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms. Math. Comput. 35 (1980) 1039–1062. [CrossRef] [Google Scholar]
  5. L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation. Comput. Math. Appl. 27 (1994) 91–102. [Google Scholar]
  6. L. Bales and I. Lasiecka, Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous L2 Dirichlet boundary data. Math. Comput. 64 (1995) 89–115. [Google Scholar]
  7. R.H. Bartels and G.W. Stewart, Algorithm 432: solution of the matrix equation AX + XB = C. Comm. ACM 15 (1972) 820–826. [CrossRef] [Google Scholar]
  8. M. Berggren, Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42 (2004) 860–877. [Google Scholar]
  9. J. Brunken, K. Smetana and K. Urban, (Parametrized) First order transport equations: realization of optimally stable Petrov-Galerkin methods. SIAM J. Sci. Comput. 41 (2019) A592–A621. [CrossRef] [Google Scholar]
  10. T. Bui-Thanh, L. Demkowicz and O. Ghattas, Constructively well-posed approximation methods with unity inf-sup and continuity constants for partial differential equations. Math. Comput. 82 (2013) 1923–1952. [CrossRef] [Google Scholar]
  11. W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420–2445. [Google Scholar]
  12. L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions. Numer. Meth. Part. Diff. Equ. 27 (2011) 70–105. [CrossRef] [Google Scholar]
  13. L. Demkowicz, J. Gopalakrishnan, S. Nagaraj and P. Sepúlveda, A spacetime DPG method for the Schrödinger equation. SIAM J. Numer. Anal. 55 (2017) 1740–1759. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60 (2011) 546–560. [Google Scholar]
  15. T. Ellis, J. Chan and L. Demkowicz, Robust DPG methods for transient convection-diffusion. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114. Springer (2016) 179–203. [CrossRef] [Google Scholar]
  16. J. Ernesti and C. Wieners, Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. Comput. Methods Appl. Math. 19 (2019) 465–481. [Google Scholar]
  17. G. Golub and C.F. Van Loan, Matrix Computations, 4th edition. The Johns Hopkins University Press (2013). [Google Scholar]
  18. B. Haasdonk, Reduced Basis Methods for Parametrized PDEs – a tutorial. In: Model Reduction and Approximation edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. Chapter 2. SIAM (2017) 65–136. [CrossRef] [Google Scholar]
  19. J. Henning, D. Palitta, V. Simoncini and K. Urban, Matrix oriented reduction of space-time Petrov–Galerkin variational problems. In: Numerical Mathematics and Advanced Applications ENUMATH 2019, edited by F.J. Vermolen and C. Vuik. Vol. 139 of Lect. Notes Comput. Sci. Eng. Springer (2021) 1049–1057. [CrossRef] [Google Scholar]
  20. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016). [Google Scholar]
  21. B. Keith, A priori error analysis of high-order LL* (FOSLL*) finite element methods. Comput. Math. Appl. 103 (2021) 12–18. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM. J. Matrix Anal. Appl. 32 (2011) 1288–1316. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I Springer (1972). Translated from the French by P. Kenneth. [Google Scholar]
  24. S. May, R. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51 (2013) 2585–2611. [Google Scholar]
  25. C. Mollet, Parabolic PDEs in space-time formulations: stability for Petrov–Galerkin discretizations with B-splines and existence of moments for problems with random coefficients. Ph.D. thesis, Universität zu Köln (2016). [Google Scholar]
  26. R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, edited by R.A. DeVore and A. Kunoth. Springer (2009) 409–542. [CrossRef] [Google Scholar]
  27. D. Palitta, Matrix equation techniques for certain evolutionary partial differential equations. J. Sci. Comput. 87 (2021) 1–36. [CrossRef] [Google Scholar]
  28. C.E. Powell, D. Silvester and V. Simoncini, An efficient reduced basis solver for stochastic Galerkin matrix equations. SIAM J. Sci. Comput. 39 (2017) A141–A163. [CrossRef] [Google Scholar]
  29. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer (2016). [Google Scholar]
  30. D. Silvester and M. Mihajlović, A black-box multigrid preconditioner for the biharmonic equation. BIT 44 (2004) 151–163. [CrossRef] [MathSciNet] [Google Scholar]
  31. V. Simoncini, Computational methods for linear matrix equations. SIAM Rev. 58 (2016) 377–441. [CrossRef] [MathSciNet] [Google Scholar]
  32. O. Steinbach and M. Zank, A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505 (2022) 24. [Google Scholar]
  33. K. Urban and A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C.R. Math. Acad. Sci. Paris 350 (2012) 203–207. [CrossRef] [MathSciNet] [Google Scholar]
  34. K. Urban and A.T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. [Google Scholar]
  35. J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195–202. [Google Scholar]
  36. M. Zank, The Newmark method and a space-time FEM for the second-order wave equation. In: Numerical Mathematics and Advanced Applications ENUMATH 2019, edited by F.J. Vermolen, C. Vuik. Vol. 139 of Lect. Notes Comput. Sci. Eng Springer (2021) 1225–1233. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you