Open Access
Volume 56, Number 4, July-August 2022
Page(s) 1437 - 1449
Published online 27 June 2022
  1. P. Ballard, The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154 (2000) 199–274. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Ballard and S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem. ESAIM: M2AN 39 (2005) 59–77. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. Ballard and A. Charles, An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction. C. R. Méc. 346 (2018) 222–236. [Google Scholar]
  4. A. Bressan, Incompatibilità dei teoremi di esistenza e di unicità del moto per un tipo molto comune e regolare di sistemi meccanici. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 14 (1960) 333–348. [Google Scholar]
  5. A. Charles and P. Ballard, Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points. ESAIM: M2AN 48 (2014) 1–25. [Google Scholar]
  6. F. Dubois, V. Acary and M. Jean, The contact dynamics method: a nonsmooth story. C. R. Méc. 346 (2018) 247–262. [Google Scholar]
  7. J. Hwangbo, J. Lee and M. Hutter, Per-contact iteration method for solving contact dynamics. IEEE Rob. Autom. Lett. 3 (2018) 895–902. [CrossRef] [Google Scholar]
  8. S. Kepley and T. Zhang, A constructive proof of the Cauchy-Kovalevskaya theorem for ordinary differential equations. J. Fixed Point Theory App. 23 (2021) 1–23. [CrossRef] [Google Scholar]
  9. M. Loday-Richaud, Divergent Series, Summability and Resurgence II. Lecture Notes in Mathematics. Vol. 2154. Springer (2016). [CrossRef] [Google Scholar]
  10. Z. Manchester and S. Kuindersma, Variational contact-implicit trajectory optimization. In: Robotics Research. Springer (2020) 985–1000. [Google Scholar]
  11. M.D.P. Monteiro Marques, Inelastic shocks with or without friction: Existence results. In: Differential Inclusions in Nonsmooth Mechanical Problems. Springer (1993) 72–111. [CrossRef] [Google Scholar]
  12. J.-J. Moreau, Application of convex analysis to some problems of dry friction. In: Trends in Applications of Pure Mathematics to Mechanics, Pitman (1977) 263–280. [Google Scholar]
  13. D. Percivale, Uniqueness in the elastic bounce problem, II. J. Differ. Equ. 90 (1991) 304–315. [CrossRef] [Google Scholar]
  14. M. Schatzman, A class of nonlinear differential equations of second order in time. Nonlinear Anal. Theory Methods App. 2 (1978) 355–373. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you