Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1773 - 1808
DOI https://doi.org/10.1051/m2an/2022047
Published online 01 August 2022
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford mathematical monographs, Clarendon Press, Oxford, New York (2000). [Google Scholar]
  2. W.K. Allard, On the first variation of a varifold. Ann. Math. (1972) 417–491. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31 (2008) 225–253. [Google Scholar]
  4. J.L. Blanco and P.K. Rai, Nanoflann: A C++ header-only library for nearest neighbor search wih KD-trees (2014). [Google Scholar]
  5. V.I. Bogachev, Measure Theory II. Springer Berlin Heidelberg (2007). [CrossRef] [Google Scholar]
  6. K.A. Brakke, The Motion of a Surface by its Mean Curvature. Mathematical notes (20), Princeton University Press (1978). [Google Scholar]
  7. K. Brakke, Minimal cones on hypercubes. J. Geom. Anal. 1 (1991) 329–338. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Brakke, The surface evolver. Exp. Math. 1 (1992) 141–165. [CrossRef] [Google Scholar]
  9. E. Bretin and V. Perrier, Phase field method for mean curvature flow with boundary constraints. ESAIM: M2AN 46 (2012) 1509–1526. [CrossRef] [EDP Sciences] [Google Scholar]
  10. B. Buet, G.P. Leonardi and S. Masnou, A Varifold Approach to Surface Approximation. Arch. Ration. Mech. Anal. (2017). [Google Scholar]
  11. N. Charon and A. Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6 (2013) 2547–2580. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Charon, B. Charlier, J. Glaunès, P. Gori and P. Roussillon, Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles, In Riemannian Geometric Statistics in Medical Image Analysis, edited by X. Pennec, S. Sommer and T. Fletcher. Academic Press (2020) 441–477. [CrossRef] [Google Scholar]
  13. F. Chazal, D. Cohen-Steiner, A. Lieutier and B. Thibert, Stability of curvature measures. Eur. Symp. Geom. Process. 28 (2009) 01. [Google Scholar]
  14. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33 (1991) 749–786. [Google Scholar]
  15. U. Clarenz, M. Rumpf and A. Telea, Finite elements on point based surfaces. In Eurographics Symposium of Point Based Graphics (2004). [Google Scholar]
  16. D. Cohen-Steiner and J.-M. Morvan, Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74 (2006) 363–394. [CrossRef] [Google Scholar]
  17. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Desbrun, M. Meyer, P. Schröder and A. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. of SIGGRAPH 99, Annual Conference Series (1999) 317–324. [Google Scholar]
  19. G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–612. [Google Scholar]
  20. K. Ecker, Regularity Theory for Mean Curvature Flow, Vol. 57, Birkhäuser Basel (2004) 01. [Google Scholar]
  21. L.C. Evans and J. Spruck, Motion of level sets by mean curvature i. J. Differ. Geom. 33 (1991) 635–681. [CrossRef] [Google Scholar]
  22. L.C. Evans and J. Spruck, Motion of level sets by mean curvature iv. J. Geom. Anal 5 (1995) 77–114. [CrossRef] [MathSciNet] [Google Scholar]
  23. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (2006) 1097–1123. [Google Scholar]
  24. X. Feng and A. Prohl, Numerical analysis of the allen-cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Ilmanen, Convergence of the allen-cahn equation to brakke’s motion by mean curvature. J. Differ. Geom. 38 (1993) 417–461. [CrossRef] [Google Scholar]
  26. T. Ilmanen, A. Neves and F. Schulze, On short time existence for the planar network flow. J. Differ. Geom. 111 (2019) 39–89. [CrossRef] [Google Scholar]
  27. I. Kaltenmark, B. Charlier and N. Charon, A general framework for curve and surface comparison and registration with oriented varifolds. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 4580–4589. [Google Scholar]
  28. L. Kim and Y. Tonegawa, On the mean curvature flow of grain boundaries. Ann. Inst. Fourier 67 (2017) 43–142. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Mantegazza, M. Novaga and V.M. Tortorelli, Motion by curvature of planar networks. Ann. Sc. norm. super. Pisa - Cl. sci. 3 (2004) 235–324. [MathSciNet] [Google Scholar]
  30. B. Merriman, J.K. Bence and S.J. Osher, Motion of multiple junctions: A level set approach. J. Comput. Phys. 112 (1994) 334–363. [CrossRef] [MathSciNet] [Google Scholar]
  31. Q. Mérigot, M. Ovsjanikov and L.J. Guibas, Voronoi-Based Curvature and Feature Estimation from Point Clouds. IEEE Trans. Vis. Comput. Graph. 17 (2011) 743–756. [CrossRef] [PubMed] [Google Scholar]
  32. U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1993) 15–36. [Google Scholar]
  33. H. Schumacher and M. Wardetzky, Variational convergence of discrete minimal surfaces. Numer. Math. 141 (2019) 173–213. [CrossRef] [MathSciNet] [Google Scholar]
  34. N. Sharp and K. Crane, A Laplacian for Nonmanifold Triangle Meshes. Comput. Graph. Forum 39 (2020). [Google Scholar]
  35. L. Simon, Lectures on geometric measure theory, In Vol. 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University Centre for Mathematical Analysis, Canberra (1983). [Google Scholar]
  36. P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19 (2003) 439–456. [CrossRef] [MathSciNet] [Google Scholar]
  37. J.E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103 (1976) 489–539. [CrossRef] [MathSciNet] [Google Scholar]
  38. P. Yang and X. Qian, Direct computing of surface curvatures for point-set surfaces. 01 (2007) 29–36. [Google Scholar]
  39. Y.-L. Yang, Y.-K. Lai, S.-M. Hu and H. Pottmann, Robust Principal Curvatures on Multiple Scales, In Symposium on Geometry Processing, edited by A. Sheffer and K. Polthier, The Eurographics Association (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you