Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1741 - 1772
DOI https://doi.org/10.1051/m2an/2022050
Published online 20 July 2022
  1. A. Agosti, Discontinuous Galerkin finite element discretization of a degenerate Cahn-Hilliard equation with a single-well potential. Calcolo 56 (2019) 1–47. [CrossRef] [Google Scholar]
  2. A. Agosti, P.F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn–Hilliard-type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40 (2017) 7598–7626. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Agosti, S. Marchesi, G. Scita and P. Ciarletta, Modelling cancer cell budding in-vitro as a self-organised, non-equilibrium growth process. J. Theor. Biol. 492 (2020) 110203. [CrossRef] [Google Scholar]
  4. L. Almeida, F. Bubba, B. Perthame and C. Pouchol, Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Netw. Heterog. Media 14 (2019) 23–41. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Baba and M. Tabata, On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. 15 (1981) 3–25. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. [Google Scholar]
  7. M. Bessemoulin-Chatard and A. Jüngel, A finite volume scheme for a Keller-Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34 (2014) 96–122. [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [CrossRef] [Google Scholar]
  9. S.C. Brenner, S. Gu, T. Gudi and L.-Y. Sung, A quadratic C0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50 (2012) 2088–2110. [Google Scholar]
  10. F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame and M. Sabbah, A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells. J. Theor. Biol. 479 (2019) 73–80. [CrossRef] [Google Scholar]
  11. H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20 (2003) 341–366. [CrossRef] [PubMed] [Google Scholar]
  12. J.W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795–801. [CrossRef] [Google Scholar]
  13. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [Google Scholar]
  14. C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. [Google Scholar]
  15. C. Cancès, M. Ibrahim and M. Saad, Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. SMAI J. Comput. Math. 3 (2017) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.A. Carrillo, S. Hittmeir and A. Jüngel, Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Methods Appl. Sci. 22 (2012) 1250041. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Chatelain, T. Balois, P. Ciarletta and M. Ben Amar, Emergence of microstructural patterns inskin cancer: A phase separation analysis in a binary mixture. New J. Phys. 13 (2011) 339–357. [Google Scholar]
  18. L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79 (2011) 561–596. [Google Scholar]
  19. M. Ebenbeck and H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits. SIAM J. Math. Anal. 51 (2019) 1868–1912. [CrossRef] [MathSciNet] [Google Scholar]
  20. C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems (Óbidos, 1988). Vol. 88 of International Series of Numerical Mathematics. Birkhäuser, Basel (1989) 35–73 [CrossRef] [Google Scholar]
  21. C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. [Google Scholar]
  22. C.M. Elliott and Z. Songmu, On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96 (1986) 339–357. [CrossRef] [Google Scholar]
  23. C.M. Elliott, D.A. French and F.A. Milner, A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54 (1989) 575–590. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. [Google Scholar]
  25. R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. [Google Scholar]
  26. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems (1997). [Google Scholar]
  27. H. Fujii, Some remarks on finite element analysis of time dependent field problems. In: Theory and Practice in Finite Element Structural Analysis, edited by Y. Yamada and R.H. Gallager. University of Tokyo Press (1973) 91–106. [Google Scholar]
  28. H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (2016) 1095–1148. [CrossRef] [MathSciNet] [Google Scholar]
  29. H. Garcke, K.F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Miranville, The Cahn-Hilliard equation and some of its variants. AIMS Math. 2 (2017) 479–544. [CrossRef] [Google Scholar]
  31. A. Novick-Cohen, The Cahn-Hilliard equation. In: Handbook of Differential Equations: Evolutionary Equations. Vol. IV of Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam (2008) 201–228. [CrossRef] [Google Scholar]
  32. B. Perthame and A. Poulain, Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility. Eur. J. Appl. Math. 32 (2021) 89–112. [CrossRef] [Google Scholar]
  33. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  34. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1997). [CrossRef] [Google Scholar]
  35. G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22 (2015) 269–289. [CrossRef] [MathSciNet] [Google Scholar]
  36. J.M. Varah, A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11 (1975) 3–5. [CrossRef] [MathSciNet] [Google Scholar]
  37. S.M. Wise, J.S. Lowengrub, H.B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth – I: Model and numerical method. J. Theor. Biol. 253 (2008) 524–543. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you