Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1687 - 1714
DOI https://doi.org/10.1051/m2an/2022051
Published online 20 July 2022
  1. B. Alpert, L. Greengard and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37 (2000) 1138–1164. [Google Scholar]
  2. X. Antoine and C. Besse, Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188 (2003) 157–175. [CrossRef] [MathSciNet] [Google Scholar]
  3. X. Antoine, C. Besse and V. Mouysset, Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comput. 73 (2004) 1779–1799. [CrossRef] [Google Scholar]
  4. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schaedle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4 (2008) 729–796. [MathSciNet] [Google Scholar]
  5. X. Antoine, C. Besse and P. Klein, Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys. 228 (2009) 312–335. [CrossRef] [MathSciNet] [Google Scholar]
  6. X. Antoine, C. Besse and P. Klein, Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33 (2011) 1008–1033. [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Antoine, C. Besse and P. Klein, Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: discretization and numerical results. Numer. Math. 125 (2013) 191–223. [CrossRef] [MathSciNet] [Google Scholar]
  8. X. Antoine, E. Lorin and Q. Tang, A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations. Mol. Phys. 115 (2017) 1861–1879. [CrossRef] [Google Scholar]
  9. A. Arnold, M. Ehrhardt and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1 (2003) 501–556. [Google Scholar]
  10. A. Arnold, M. Ehrhardt, M. Schulte and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci. 10 (2012) 889–916. [Google Scholar]
  11. V. Baskakov and A. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14 (1991) 123–128. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Fevens and H. Jiang, Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput. 21 (1999) 255–282. [Google Scholar]
  13. A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (1976) 237–246. [CrossRef] [Google Scholar]
  14. T. Hagstrom, New results on absorbing layers and radiation boundary conditions. In: Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, edited by M. Ainsworth, P. Davies, D. Duncan, B. Rynne and P. Martin. Vol. 31. Springer, Berlin, Heidelberg (2003). [Google Scholar]
  15. H. Han and Z. Huang, Exact artificial boundary conditions for the Schrödinger equation in ℝ2. Commun. Math. Sci. 2 (2004) 79–94. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Ji, Y. Yang, G. Pang and X. Antoine, Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains. Comput. Phys. Commun. 222 (2018) 84–93. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Jiang and L. Greengard, Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension. Comput. Math. App. 47 (2004) 955–966. [Google Scholar]
  18. M. Kazakova and P. Nobel, Discrete transparent boundary conditions for the linearized Green-Naghdi system of equations. SIAM J. Numer. Anal. 1 (2020) 657–683. [Google Scholar]
  19. D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics. Providence, AMS (2013). [Google Scholar]
  20. H. Li, X. Wu and J. Zhang, Local artificial boundary conditions for Schrödinger and heat equations by using high-order Azimuth derivatives on circular artificial boundary. Comput. Phys. Commun. 185 (2014) 1606–1615. [CrossRef] [MathSciNet] [Google Scholar]
  21. B. Li, J. Zhang and C. Zheng, An efficient second-order finite difference method for the one-dimensional Schrödinger equation with absorbing boundary conditions. SIAM J. Numer. Anal. 56 (2018) 766–791. [CrossRef] [MathSciNet] [Google Scholar]
  22. Y.Y. Lu, A Padé approximation method for square roots of symmetric positive definite matrices. SIAM J. Matrix Anal. App. 19 (1998) 833–845. [CrossRef] [Google Scholar]
  23. C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24 (2002) 161–182. [Google Scholar]
  24. G. Pang, L. Bian and S. Tang, ALmost EXact boundary condition for one-dimensional Schrödinger equation. Phys. Rev. E 86 (2012) 066709. [CrossRef] [PubMed] [Google Scholar]
  25. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). [Google Scholar]
  26. S. Tsynkov, Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27 (1998) 465–532. [CrossRef] [MathSciNet] [Google Scholar]
  27. C. Zheng, Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation. J. Comput. Math. 25 (2007) 730–745. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you