Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1655 - 1686
DOI https://doi.org/10.1051/m2an/2022040
Published online 20 July 2022
  1. A. Allendes, F. Fuica, E. Otarola and D. Quero, A posteriori error estimates for a distributed optimal control problem of the stationary Navier-Stokes equations. SIAM J. Control Optim. 59 (2021) 2898–2923. [Google Scholar]
  2. M.S. Berger, On von Kármán equations and the buckling of a thin elastic plate, I the clamped plate. Comm. Pure Appl. Math. 20 (1967) 687–719. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.S. Berger and P.C. Fife, On von Kármán equations and the buckling of a thin elastic plate. Bull. Amer. Math. Soc. 72 (1966) 1006–1011. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.S. Berger and P.C. Fife, Von Kármán equations and the buckling of a thin elastic plate. II plate with general edge conditions. Comm. Pure Appl. Math. 21 (1968) 227–241. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. [Google Scholar]
  6. S.C. Brenner and L.-Y. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 2223 (2005) 83–118. [Google Scholar]
  7. S.C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. [Google Scholar]
  8. S.C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A C0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. [Google Scholar]
  9. F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. [MathSciNet] [Google Scholar]
  10. C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal. 59 (2021) 696–719. [Google Scholar]
  11. C. Carstensen and N. Nataraj, A priori and a posteriori error analysis of the Crouzeix-Raviart and Morley FEM with original and modified right-hand sides. Comput. Methods Appl. Math. 21 (2021) 289–315. [Google Scholar]
  12. C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math 38 (2020) 142–175. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68 (2014) 2167–2181. [Google Scholar]
  14. C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39 (2019) 167–200. [Google Scholar]
  15. C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. [Google Scholar]
  16. E. Casas, M. Mateos and J.P. Raymond, Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46 (2007) 952–982 (electronic). [Google Scholar]
  17. H. Chen, A.K. Pani and W. Qiu, A mixed finite element scheme for biharmonic equation with variable coefficient and von Kármán equations. arXiv:2005.11734 (2020). [Google Scholar]
  18. S. Chowdhury, T. Gudi and A.K. Nandakumaran, A framework for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to C0 IP methods. Numer. Funct. Anal. Optim. 36 (2015) 1388–1419. [Google Scholar]
  19. S. Chowdhury, N. Nataraj and D. Shylaja, Morley FEM for a distributed optimal control problem governed by the von Kármán equations. Comput. Methods Appl. Math. 21 (2021) 233–262. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  21. P.G. Ciarlet, Mathematical Elasticity: Theory of Plates. Vol. II. North-Holland, Amsterdam (1997). [Google Scholar]
  22. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous GAlerkin Methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). [CrossRef] [Google Scholar]
  23. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  24. D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35 (2015) 1779–1811. [Google Scholar]
  25. P. Grisvard, Singularities in Boundary Value Problems. Vol. RMA 22. Masson & Springer-Verlag (1992). [Google Scholar]
  26. L. Hou and J.C. Turner, Finite element approximation of optimal control problems for the von Kármán equations. Numer. Methods Part. Differ. Equ. 11 (1995) 111–125. [CrossRef] [Google Scholar]
  27. J. Hu and Z.C. Shi, The best L2 norm error estimate of lower order finite element methods for the fourth order problem. J. Comput. Math. 30 (2012) 449–460. [CrossRef] [MathSciNet] [Google Scholar]
  28. H.B. Keller, Approximation methods for nonlinear problems with application to two-point boundary value problems. Math. Comput. 29 (1975) 464–474. [CrossRef] [Google Scholar]
  29. G.H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. [Google Scholar]
  30. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). [CrossRef] [Google Scholar]
  31. G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. [Google Scholar]
  32. G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. [Google Scholar]
  33. G. Mallik, N. Nataraj and J.P. Raymond, Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations. ESAIM: M2AN 52 (2018) 1137–1172. [CrossRef] [EDP Sciences] [Google Scholar]
  34. T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26 (1976) 255–269. [CrossRef] [MathSciNet] [Google Scholar]
  35. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Vol. 112 of Graduate Studies in Mathematics. Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  36. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you