Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1545 - 1578
DOI https://doi.org/10.1051/m2an/2022054
Published online 20 July 2022
  1. A. Abdulle, A. Barth and C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11 (2013) 1033–1070. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.J. Adler and J.E. Taylor, Random Fields and Geometry. Springer Science & Business Media (2009). [Google Scholar]
  3. C. Aliprantis and K. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer (2006). [Google Scholar]
  4. C. Audouze and P.B. Nair, Some a priori error estimates for finite element approximations of elliptic and parabolic linear stochastic partial differential equations. Int. J. Uncertain. Quantif. 4 (2014). [Google Scholar]
  5. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825 (electronic). [Google Scholar]
  6. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034 (electronic). [Google Scholar]
  7. D.A. Barajas-Solano and D.M. Tartakovsky, Stochastic collocation methods for nonlinear parabolic equations with random coefficients. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 475–494. [CrossRef] [MathSciNet] [Google Scholar]
  8. O.E. Barndorff-Nielsen, Hyperbolic distributions and distributions on hyperbolae. Scand. J. Stat. 5 (1978) 151–157. [Google Scholar]
  9. A. Barth and A. Lang, Simulation of stochastic partial differential equations using finite element methods. Stochastics 84 (2012, April–June) 217–231. [Google Scholar]
  10. A. Barth and A. Stein, Approximation and simulation of infinite-dimensional Lévy processes. Stoch. Part. Differ. Equ.: Anal. Comput. 6 (2018) 286–334. [Google Scholar]
  11. A. Barth and A. Stein, A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 1707–1743. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011) 123–161. [Google Scholar]
  13. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15. Springer Science & Business Media (2007). [Google Scholar]
  14. J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. [Google Scholar]
  15. J. Charrier, R. Scheichl and A.L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51 (2013) 322–352. [Google Scholar]
  16. K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Visual. Sci.. [Google Scholar]
  17. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. App. 9 (2011) 11–47. [CrossRef] [Google Scholar]
  18. G. Detommaso, T. Dodwell and R. Scheichl, Continuous level Monte Carlo and sample-adaptive model hierarchies. SIAM/ASA J. Uncertain. Quantif. 7 (2019) 93–116. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  20. Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124 (1996) 591–600. [CrossRef] [Google Scholar]
  21. M. Eigel, C. Merdon and J. Neumann, An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 1219–1245. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Evans, Partial Differential Equations. American Mathematical Society (2010). [Google Scholar]
  23. P. Frauenfelder and C. Schwab, R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205–228. [CrossRef] [Google Scholar]
  24. I.G. Graham, F.Y. Kuo, J.A. Nichols, R. Scheichl, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015, October) 329–368. [Google Scholar]
  25. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Circulant embedding with QMC: Analysis for elliptic PDE with lognormal coefficients. Numer. Math. 140 (2018) 479–511. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. D.S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. [Google Scholar]
  27. W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, 2nd softcover print edition. Springer, Berlin, Heidelberg (2017). [CrossRef] [Google Scholar]
  28. H. Harbrecht and J. Li, First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM: M2AN 47 (2013) 1533–1552. [CrossRef] [EDP Sciences] [Google Scholar]
  29. V.H. Hoang and C. Schwab, Sparse tensor Galerkin discretization of parametric and random parabolic PDEs – Analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45 (2013) 3050–3083. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Kornhuber and E. Youett, Adaptive multilevel Monte Carlo methods for stochastic variational inequalities. SIAM J. Numer. Anal. 56 (2018) 1987–2007. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Lang and J. Potthoff, Fast simulation of Gaussian random fields. Monte Carlo Methods App. 17 (2011) 195–214. [Google Scholar]
  32. C. Lang, A. Sharma, A. Doostan and K. Maute, Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces. Comput. Mech. 56 (2015) 753–767. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Li, X. Wang and K. Zhang, Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients. Appl. Math. Comput. 275 (2016) 181–194. [MathSciNet] [Google Scholar]
  34. F. Müller and C. Schwab, Finite elements with mesh refinement for wave equations in polygons. J. Comput. Appl. Math. 283 (2015) 163–181. [CrossRef] [MathSciNet] [Google Scholar]
  35. S. Nicaise, Polygonal interface problems: Higher regularity results. Commun. Part. Differ. Equ. 15 (1990) 1475–1508. [CrossRef] [Google Scholar]
  36. S. Nicaise and A.-M. Sändig, General interface problems – I. Math. Methods Appl. Sci. 17 (1994) 395–429. [CrossRef] [MathSciNet] [Google Scholar]
  37. S. Nicaise and A.-M. Sändig, General interface problems – II. Math. Methods Appl. Sci. 17 (1994) 431–450. [CrossRef] [Google Scholar]
  38. F. Nobile and R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 80 (2009) 979–1006. [CrossRef] [Google Scholar]
  39. F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. [Google Scholar]
  40. M. Petzoldt, Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwend. 20 (2001) 431–455. [CrossRef] [Google Scholar]
  41. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edition. Springer Science & Business Media (1997). [Google Scholar]
  42. C. Schwab, P-and Hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (Numerical Mathematics and Scientific Computation). Oxford University Press, New York (1999). [Google Scholar]
  43. C. Schwab and C.J. Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. [CrossRef] [MathSciNet] [Google Scholar]
  44. G. Stefanou and M. Papadrakakis, Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields. Comput. Methods Appl. Mech. Eng. 196 (2007) 2465–2477. [CrossRef] [Google Scholar]
  45. A.L. Teckentrup, R. Scheichl, M.B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125 (2013) 569–600. [Google Scholar]
  46. G. Zhang and M. Gunzburger, Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50 (2012) 1922–1940. [Google Scholar]
  47. T. Zhou, Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236 (2011) 782–792. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you