Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1579 - 1627
DOI https://doi.org/10.1051/m2an/2022052
Published online 20 July 2022
  1. J. Alastruey, K.H. Parker, J. Peiró and S.J. Sherwin, Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4 (2008) 317–336. [MathSciNet] [Google Scholar]
  2. D.S. Berger and J.K.J. Li, Temporal relationship between left ventricular and arterial system elastances. IEEE Trans. Biomed. Eng. 39 (1992) 404–410. [CrossRef] [Google Scholar]
  3. J. Blacher and M.E. Safar, Large-artery stiffness, hypertension and cardiovascular risk in older patients. Nat. Clinical Pract. Cardiovasc. Med. 2 (2005) 450–455. [CrossRef] [PubMed] [Google Scholar]
  4. P.J. Blanco, S.M. Watanabe, E. Dari, M.A.R. Passos and R.A. Feijóo, Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms. Biomech. Model. Mechanobiol. 13 (2014) 1303–1330. [CrossRef] [PubMed] [Google Scholar]
  5. P.J. Blanco, S. Watanabe, M. Passos, P. Lemos and R.A. Feijóo, An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Trans. Biomed. Eng. 62 (2015) 736–53. [CrossRef] [PubMed] [Google Scholar]
  6. E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts, M. Willemet and J. Alastruey, A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Methods Biomed. Eng. 31 (2015). [Google Scholar]
  7. A. Cappello, G. Gnudi and C. Lamberti, Identification of the three-element windkessel model incorporating a pressure-dependent compliance. Ann. Biomed. Eng. 23 (2006) 164–177. [Google Scholar]
  8. K. Cruickshank, L. Riste, S.G. Anderson, J.S. Wright, G. Dunn and R.G. Gosling, Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance. Circulation 106 (2002) 2085–2090. [CrossRef] [PubMed] [Google Scholar]
  9. S. Epstein, M. Willemet, P.J. Chowienczyk and J. Alastruey, Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Am. J. Physiol. Heart Circulatory Physiol. 309 (2015) H222–H234. [CrossRef] [PubMed] [Google Scholar]
  10. R. Fogliardi, M. Di Donfrancesco and R. Burattini, Comparison of linear and nonlinear formulations of the three-element windkessel model. Am. J. Physiol. Heart Circulatory Physiol. 271 (1996) H2661–H2668. [CrossRef] [Google Scholar]
  11. L. Formaggia and A. Veneziani, Reduced and multiscale models for the human cardiovascular system. Technical report, Politecnico di Milano (October, 2015. [Google Scholar]
  12. L. Formaggia, A. Quarteroni and A. Veneziani, editors. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. MS&A: Modeling, Simulation & Applications. Vol. 1. Springer, Milano (2009). [Google Scholar]
  13. F.E. Fossan, J. Mariscal-Harana, J. Alastruey and L.R. Hellevik, Optimization of topological complexity for one-dimensional arterial blood flow models. J. R. Soc. Interface 15 (2018) 20180546. [CrossRef] [PubMed] [Google Scholar]
  14. S. Fujimoto, R. Mizuno, Y. Saito and S. Nakamura, Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels 19 (2004) 19–22. [CrossRef] [PubMed] [Google Scholar]
  15. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd edition. Springer (1993). [Google Scholar]
  16. A. Ghigo, Reduced-Order Models for Blood Flow in Networks of Large Arteries. Ph.D thesis, Université Pierre et Marie Curie, Paris (September 2017). [Google Scholar]
  17. J.K. Hale, Ordinary Differential Equations. John Wiley & Sons, Inc. (1969). [Google Scholar]
  18. A. Harten and S. Osher, Uniformly High-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accuracy essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (1987) 231–303. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.J. Hunter, Numerical simulation of arterial blood flow. Master’s thesis, The University of Auckland, Auckland (1972). [Google Scholar]
  21. J.K.J. Li, T. Cui and G.M. Drzewiecki, A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans. Biomed. Eng. 37 (1990) 673–678. [CrossRef] [Google Scholar]
  22. K.S. Matthys, J. Alastruey, J. Peiró, A.W. Khir, P. Segers, P.R. Verdonck, K.H. Parker and S.J. Sherwin, Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40 (2007) 3476–3486. [CrossRef] [Google Scholar]
  23. V. Milišić and A. Quarteroni, Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM: Math. Model. Numer. Anal. 38 (2004) 613–632. [CrossRef] [EDP Sciences] [Google Scholar]
  24. M. Mirramezani and S.C. Shadden, A distributed lumped parameter model of blood flow. Ann. Biomed. Eng. 48 (2020) 2870–2886. [CrossRef] [PubMed] [Google Scholar]
  25. L.O. Müller and E.F. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 681–725. [CrossRef] [MathSciNet] [Google Scholar]
  26. L.O. Müller and E.F. Toro, Enhanced global mathematical model for studying cerebral venous blood flow. J. Biomech. 47 (2014) 3361–3372. [CrossRef] [Google Scholar]
  27. J.P. Murgo, N. Westerhof, J.P. Giolma and S.A. Altobelli, Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62 (1980) 105–116. [CrossRef] [PubMed] [Google Scholar]
  28. J.P. Mynard, Computer modelling and wave intensity analysis of perinatal cardiovascular function and dysfunction, Ph.D. thesis, Department of Paediatrics, The University of Melbourne (August, 2011). [Google Scholar]
  29. J.P. Mynard and J.J. Smolich, One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann. Biomed. Eng. 43 (2015) 1443–1460. [CrossRef] [PubMed] [Google Scholar]
  30. S. Safaei, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik and P.J. Hunter, Bond graph model of cerebral circulation: toward clinically feasible systemic blood flow simulations. Front. Physiol. 9 (2018) 148. [CrossRef] [Google Scholar]
  31. K. Sagawa, R.K. Lie and J. Schaefer, Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift für Biologie 37: 483–526 (1899). J. Mol. Cell. Cardiol. 22 (1990) 253–254. [CrossRef] [Google Scholar]
  32. M. Saito, Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada and P.-Y. Lagrée, One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. J. Biomech. Eng. 133 (2011) 121005. [CrossRef] [PubMed] [Google Scholar]
  33. D.A. Sánchez, Ordinary Differential Equations and Stability Theory. Dover Publications, Inc. (1968). [Google Scholar]
  34. S.J. Sherwin, V. Franke, J. Peiró and K.H. Parker, One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47 (2003) 217–250. [CrossRef] [Google Scholar]
  35. Y. Shi, P. Lawford and R. Hose, Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine 10 (2011) 33. [CrossRef] [Google Scholar]
  36. A. Spilimbergo, E.F. Toro and L.O. Müller, One-dimensional blood flow with discontinuous properties and transport: mathematical analysis and numerical schemes. Commun. Comput. Phys. 29 (2021) 649–697. [CrossRef] [MathSciNet] [Google Scholar]
  37. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edition. Springer-Verlag, Berlin Heidelberg (2009). [Google Scholar]
  38. E.F. Toro, Brain venous haemodynamics, neurological diseases and mathematical modelling: a review. Appl. Math. Comput. 272 (2016) 542–579. [MathSciNet] [Google Scholar]
  39. E.F. Toro, R.C. Millington and L.A.M. Nejad, Towards very high-order godunov schemes. In: Godunov Methods: Theory and Applications, Edited Review, edited by E.F. Toro. Kluwer Academic/Plenum Publishers (2001) 905–937. [Google Scholar]
  40. M. Ursino, A mathematical model of the carotid baroregulation in pulsating conditions. IEEE Trans. Biomed. Eng. 46 (1999) 382–392. [CrossRef] [Google Scholar]
  41. M. Ursino and C.A. Lodi, A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82 (1997) 1256–1269. [CrossRef] [PubMed] [Google Scholar]
  42. M. Ursino, A. Fiorenzi and E. Belardinelli, The role of pressure pulsatility in the carotid baroreflex control: a computer simulation study. Comput. Biol. Med. 26 (1996) 297–314. [CrossRef] [Google Scholar]
  43. B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5 (1985) 1–20. [Google Scholar]
  44. N. Xiao, J. Alastruey and C.A. Figueroa, A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 204–231. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you