Open Access
Volume 56, Number 6, November-December 2022
Page(s) 1993 - 2019
Published online 14 September 2022
  1. E.J. Balder, Lectures on Young measure theory and its applications in economics. Rend. Istit. Mat. Univ. Trieste 31 (2001) 1–69. [Google Scholar]
  2. N. Bhauryal, U. Koley and G. Vallet, The Cauchy problem for a fractional conservation laws driven by Lévy noise. Stoch. Process. Appl. 130 (2020) 5310–5365. [CrossRef] [Google Scholar]
  3. N. Bhauryal, U. Koley and G. Vallet, A fractional degenerate parabolic-hyperbolic Cauchy problem with noise. J. Differ. Equ. 284 (2021) 433–521. [CrossRef] [Google Scholar]
  4. I.H. Biswas, U. Koley and A.K. Majee, Continuous dependence estimate for conservation laws with Lévy noise. J. Differ. Equ. 259 (2015) 4683–4706. [CrossRef] [Google Scholar]
  5. D. Breit and T.C. Moyo, Dissipative solutions to the stochastic Euler equations. J. Math. Fluid Mech. 23 (2021) 23. [CrossRef] [Google Scholar]
  6. D. Breit, E. Feireisl and M. Hofmanova, On solvability and ill-posedness of the compressible Euler system subject to stochastic forces. Anal. PDE 13 (2020) 371–402. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Breit and P.R. Mensah, Stochastic compressible Euler equations and inviscid limits. Nonlinear Anal. 184 (2019) 218–238. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Breit, E. Feireisl and M. Hofmanová, Stochastically forced compressible fluid flows. De Gruyter Series in Applied and Numerical Mathematics. De Gruyter, Berlin, Munich, Boston (2018). [Google Scholar]
  9. Y. Brenier, C. De Lellis and L. Székelyhidi, Jr., Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305 (2011) 351–361. [CrossRef] [Google Scholar]
  10. Z. Brzezniak, E. Carelli and A. Prohl, Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33 (2013) 771–824. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Chaudhary and U. Koley, A convergent finite volume scheme for stochastic compressible barotropic Euler equations, Submitted. Preprint arXiv:3901170 (2022). [Google Scholar]
  12. A. Chaudhary and U. Koley, On weak-strong uniqueness for stochastic equations of incompressible fluid flow. J. Math. Fluid Mech. 24 (2022) 62. [CrossRef] [Google Scholar]
  13. E. Chiodaroli, E. Feireisl and F. Flandoli, Ill-posedness for the full Euler system driven by multiplicative white noise. Preprint arXiv:1904.07977 (2019). [Google Scholar]
  14. E. Chiodaroli, O. Kreml, V. Mácha and S. Schwarzacher, Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Preprint arXiv:1812.09917v1 (2010). [Google Scholar]
  15. C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (2010) 225–260. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. De Lellis and L. Székelyhidi, Jr., The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.) 49 (2012) 347–375. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.J. DiPerna, Measure valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88 (1985) 223–270. [CrossRef] [Google Scholar]
  18. E. Feireisl and M. Lukáčová-Medviová, Convergence of a mixed finite element finite volume scheme for the isentropic Navier–Stokes system via dissipative measure-valued solutions. Found. Comput. Math. 18 (2018) 703–730. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Feireisl, M. Lukáčová-Medviová and H. Mizerová, Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 20 (2020) 923–966. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Feireisl, M. Lukáčová-Medvidová and H. Mizerová, K-convergence as a new tool in numerical analysis. IMA J. Numer. Anal. 40 (2020) 2227–2255. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differ. Equ. 55 (2016) 20. [CrossRef] [Google Scholar]
  22. F. Flandoli, An introduction to 3D stochastic fluid dynamics. SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics 1942 (2008) 51–150. [CrossRef] [Google Scholar]
  23. N.E. Glatt-Holtz and V.C. Vicol, Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42 (2014) 80–145. [MathSciNet] [Google Scholar]
  24. M. Hofmanova, U. Koley and U. Sarkar, Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Commun. Partial. Differ. Equ. Preprint arXiv:2012.07391 (2022). [Google Scholar]
  25. M. Hofmanová, R. Zhu and X. Zhu, On ill- and well-posedness of dissipative martingale solutions to stochastic #D Euler equations. Preprint arXiv:2009.09552 (2020). [Google Scholar]
  26. A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42 (1998) 164–174. [Google Scholar]
  27. T. Karper, A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125 (2013) 441–510. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.U. Kim, Measure valued solutions to the stochastic Euler equations in ℝd. Stoch. PDE: Anal. Comp. 3 (2015) 531–569. [CrossRef] [Google Scholar]
  29. U. Koley, A.K. Majee and G. Vallet, A finite difference scheme for conservation laws driven by Lévy noise. IMA J. Numer. Anal. 38 (2018) 998–1050. [CrossRef] [MathSciNet] [Google Scholar]
  30. U. Koley, A.K. Majee and G. Vallet, Continuous dependence estimate for a degenerate parabolic–hyperbolic equation with Lévy noise. Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017) 145–191. [MathSciNet] [Google Scholar]
  31. U. Koley, N.H. Risebro, C. Schwab and F. Weber, A multilevel Monte Carlo finite difference method for random scalar degenerate convection-diffusion equations. J. Hyperbolic Differ. Equ. 14 (2017) 415–454. [CrossRef] [MathSciNet] [Google Scholar]
  32. U. Koley, D. Ray and T. Sarkar, Multi-level Monte Carlo finite difference methods for fractional conservation laws with random data. SIAM/ASA J. Uncertain. Quantif. 9 (2021) 65–105. [CrossRef] [MathSciNet] [Google Scholar]
  33. S. Lanthaler and S. Mishra, Computation of measure-valued solutions for the incompressible Euler equations. Math. Models Methods Appl. Sci. 25 (2015) 2043–2088. [CrossRef] [MathSciNet] [Google Scholar]
  34. Y. Maday and E. Tadmor, Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Math. Anal. 26 (1989) 854–870. [Google Scholar]
  35. E. Motyl, Stochastic Navier–Stokes equations driven by Levy noise in unbounded 3d domains. Potential Anal. 38 (2012) 863–912. [Google Scholar]
  36. M. Ondrejt, Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab. 15 (2010) 1041–1091. [MathSciNet] [Google Scholar]
  37. R. Peyret, Spectral Methods for Incompressible Viscous Flow. Appl. Math. Sci. 148 (2003) 56. [Google Scholar]
  38. V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal. 3 (1993) 343–401. [CrossRef] [MathSciNet] [Google Scholar]
  39. S. Schochet, The rate of convergence of spectral-viscosity methods for periodic scalar conservationblaws. SIAM J. Numer. Anal. 27 (1990) 1142–1159. [CrossRef] [MathSciNet] [Google Scholar]
  40. E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26 (1989). [Google Scholar]
  41. E. Tadmor, Shock capturing by the spectral viscosity method. Comput. Methods Appl. Mech. Eng. 80 (1990) 197–208. [CrossRef] [Google Scholar]
  42. E. Tadmor, Total variation and error estimates for spectral viscosity approximations. Math. Comput. 60 (1993) 245–256. [CrossRef] [Google Scholar]
  43. G. Vallet and A. Zimmermann, Well-posedness for nonlinear SPDEs with strongly continuous perturbation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. DOI: 10.1017/prm.2020.13 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you