Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 1955 - 1992
DOI https://doi.org/10.1051/m2an/2022062
Published online 14 September 2022
  1. M.S. Agranovich, Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer (2015). [CrossRef] [Google Scholar]
  2. M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochatic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Math. Model. Numer. Anal. 51 (2017) 321–339. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. M. Bachmayr, A. Cohen and W. Dahmen, Parametric PDEs: sparse or low-rank approximations? IMA J. Numer. Anal. 38 (2018) 1661–1708. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Bachmayr, A. Cohen and G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. App. 24 (2018) 621–649. [Google Scholar]
  6. A. Bespalov and D. Silvester, Efficient adaptive stochastic Galerkin methods for parametric operator equations. SIAM J. Sci. Comput. 38 (2016) A2118–A2140. [CrossRef] [Google Scholar]
  7. A. Bespalov and F. Xu, A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case. Comput. Math. Appl. 80 (2020) 1084–1103. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Bespalov, C.E. Powell and D. Silvester, Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36 (2014) A339–A363. [CrossRef] [Google Scholar]
  9. A. Bespalov, D. Praetorius, L. Rocchi and M. Ruggeri, Convergence of adaptive stochastic Galerkin FEM. SIAM J. Numer. Anal. 57 (2019) 2359–2382. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Bespalov, D. Praetorius and M. Ruggeri, Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM. IMA J. Numer. Anal. 42 (2022) 2190–2213. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Binev, Adaptive methods and near-best tree approximation. Oberwolfach Report 29/2007 (2007). [Google Scholar]
  12. P. Binev, Tree approximation for hp-adaptivity. SIAM J. Numer. Anal. 56 (2018) 3346–3357. [Google Scholar]
  13. P. Binev and R. DeVore, Fast computation in adaptive tree approximation. Numer. Math. 97 (2004) 193–217. [Google Scholar]
  14. A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [Google Scholar]
  15. A. Cohen, W. Dahmen, I. Daubechies and R. DeVore, Tree approximation and optimal encoding. Appl. Comput. Harmonic Anal. 11 (2001) 192–226. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70 (2001) 27–75. [Google Scholar]
  17. A. Cohen, W. Dahmen and R. DeVore, Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal. 35 (2003) 279–303. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 11–47. [CrossRef] [Google Scholar]
  19. A.J. Crowder, C.E. Powell and A. Bespalov, Efficient adaptive multilevel stochastic Galerkin approximation using implicit a posteriori error estimation. SIAM J. Sci. Comput. 41 (2019) A1681–A1705. [CrossRef] [Google Scholar]
  20. T.J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approximation 30 (2009) 423–455. [CrossRef] [MathSciNet] [Google Scholar]
  21. G.C. Donovan, J.S. Geronimo and D.P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (1999) 1029–1056. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Eigel, C.J. Gittelson, C. Schwab and E. Zander, Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270 (2014) 247–269. [CrossRef] [Google Scholar]
  23. E. Eigel, C.J. Gittelson, C. Schwab and E. Zander, A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. ESAIM: Math. Model. Numer. Anal. 49 (2015) 1367–1398. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  24. T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615–629. [CrossRef] [MathSciNet] [Google Scholar]
  25. C.J. Gittelson, Adaptive Galerkin methods for parametric and stochastic operator equations. Ph.D. thesis, ETH Zürich (2011). [Google Scholar]
  26. C.J. Gittelson, Representation of Gaussian fields in series with independent coefficients. IMA J. Numer. Anal. 32 (2012) 294–319. [CrossRef] [MathSciNet] [Google Scholar]
  27. C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. 82 (2013) 1515–1541. [Google Scholar]
  28. C.J. Gittelson, Adaptive wavelet methods for elliptic partial differential equations with random operators. Numer. Math. 126 (2014) 471–513. [CrossRef] [MathSciNet] [Google Scholar]
  29. N. Rekatsinas and R. Stevenson, An optimal adaptive wavelet method for first order system least squares. Numer. Math. 140 (2018) 191–237. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. V.S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. 60 (1999) 237–257. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Schwab and C.J. Gittelson, Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35 (2004) 1110–1132. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Stevenson, Adaptive wavelet methods for solving operator equations: an overview. In: Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 543–597. [CrossRef] [Google Scholar]
  34. R. Stevenson, Adaptive wavelet methods for linear and nonlinear least-squares problems. Found. Comput. Math. 14 (2014) 237–283. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Zech, D. Dũng and C. Schwab, Multilevel approximation of parametric and stochastic PDEs. Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you