Open Access
Volume 56, Number 6, November-December 2022
Page(s) 1871 - 1888
Published online 12 August 2022
  1. F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in RN. Math. Ann. 332 (2005) 329–366. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  3. H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces – Applications to PDEs and Optimization. Vol. 4 of MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2006). [CrossRef] [Google Scholar]
  4. S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50 (2012) 1162–1180. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comput. 84 (2015) 1217–1240. [Google Scholar]
  6. S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). [Google Scholar]
  7. S. Bartels, Numerical Approximation of Partial Differential Equations. Vol. 64 of Texts in Applied Mathematics. Springer, Berlin, Heidelberg (2016). [CrossRef] [Google Scholar]
  8. S. Bartels, Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations. Math. Comput. 90 (2021) 2579–2602. [CrossRef] [Google Scholar]
  9. S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. App. 93 (2021) 214–229. [Google Scholar]
  10. S. Bartels and M. Milicevic, Primal-dual gap estimators for a posteriori error analysis of nonsmooth minimization problems. ESAIM: Math. Model. Numer. Anal. 54 (2020) 1635–1660. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. S. Bartels, R.H. Nochetto and A.J. Salgado, A total variation diminishing interpolation operator and applications. Math. Comput. 84 (2015) 2569–2587. [CrossRef] [Google Scholar]
  12. S. Bartels, L. Diening and R.H. Nochetto, Unconditional stability of semi-implicit discretizations of singular flows. SIAM J. Numer. Anal. 56 (2018) 1896–1914. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Berkels, A. Effland and M. Rumpf, A posteriori error control for the binary Mumford-Shah model. Math. Comput. 86 (2017) 1769–1791. [Google Scholar]
  14. S.C. Brenner, Forty years of the Crouzeix-Raviart element. Numer. Methods Part. Differ. Equ. 31 (2015) 367–396. [CrossRef] [Google Scholar]
  15. S.C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  16. M. Burger, Bregman distances in inverse problems and partial differential equations. In: Advances in Mathematical Modeling, Optimization and Optimal Control. Vol. 109 of Springer Optim. Appl. Springer, Cham (2016) 3–33. [CrossRef] [Google Scholar]
  17. C. Caillaud and A. Chambolle, Error estimates for finite differences approximations of the total variation. HAL preprint nr. 02539136 (2020). [Google Scholar]
  18. V. Caselles, A. Chambolle and M. Novaga, The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions. Multiscale Model. Simul. 6 (2007) 879–894. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167–188. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Chambolle and T. Pock, Crouzeix-Raviart approximation of the total variation on simplicial meshes. J. Math. Imaging Vision 62 (2020) 872–899. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Chambolle and T. Pock, Approximating the total variation with finite differences or finite elements. In: Handbook of Numerical Analysis: Geometric Partial Differential Equations II. Elsevier (2021). [Google Scholar]
  22. A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery. Vol. 9 of Radon Ser. Comput. Appl. Math. Walter de Gruyter, Berlin (2010) 263–340. [Google Scholar]
  23. A. Chambolle, S.E. Levine and B.J. Lucier, An upwind finite-difference method for total variation-based image smoothing. SIAM J. Imaging Sci. 4 (2011) 277–299. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. R.A.I.R.O. 7 (1973) 33–75. [Google Scholar]
  25. F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032–2055. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Herrmann, R. Herzog, S. Schmidt, J. Vidal-Núñez and G. Wachsmuth, Discrete total variation with finite elements and applications to imaging. J. Math. Imaging Vision 61 (2019) 411–431. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311–1333. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.-J. Lai and L. Matamba Messi, Piecewise linear approximation of the continuous Rudin–Osher–Fatemi model for image denoising. SIAM J. Numer. Anal. 50 (2012) 2446–2466. [CrossRef] [MathSciNet] [Google Scholar]
  29. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, edited by I. Galligani and E. Magenes. Springer, Berlin, Heidelberg (1977) 292–315. [CrossRef] [Google Scholar]
  30. L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60 (1992) 259–268. [CrossRef] [Google Scholar]
  31. R. Tovey, Mathematical challenges in electron microscopy. Ph.D. thesis, University of Cambridge (2020). [Google Scholar]
  32. J. Wang and B.J. Lucier, Error bounds for finite-difference methods for Rudin–Osher–Fatemi image smoothing. SIAM J. Numer. Anal. 49 (2011) 845–868. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you