Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 1889 - 1910
DOI https://doi.org/10.1051/m2an/2022057
Published online 12 August 2022
  1. H. Ammari and H. Kang, Polarization and Moment Tensors. Vol. 162 of Applied Mathematical Sciences. Springer, New York (2007). [Google Scholar]
  2. H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis. Mathematical Surveys and Monographs. Vol. 153. American Mathematical Society, Providence, RI (2009). [CrossRef] [Google Scholar]
  3. H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu and H. Zhang, Mathematical and Computational Methods in Photonics and Phononics. Mathematical Surveys and Monographs. Vol. 235. American Mathematical Society, Providence, RI (2018). [CrossRef] [Google Scholar]
  4. J. Bochnak, Analytic functions in Banach spaces. Stud. Math. 35 (1970) 273–292. [CrossRef] [Google Scholar]
  5. A. Charalambopoulos, On the Fréchet differentiability of boundary integral operators in the inverse elastic scattering problem. Inverse Prob. 11 (1995) 1137–1161. [CrossRef] [Google Scholar]
  6. A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier-Stokes equations. SIAM J. Math. Anal. 50 (2018) 1720–1752. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Coifman and Y. Meyer, Lavrentiev’s curves and conformal mappings. Institut Mittag-Leffler, Report No. 5. (1983). [Google Scholar]
  8. M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: shape differentiability of pseudo-homogeneous boundary integral operators. Integral Equ. Oper. Theory 72 (2012) 509–535. [CrossRef] [Google Scholar]
  9. M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: application to scattering by a homogeneous dielectric obstacle. Integral Equ. Oper. Theory 73 (2012) 17–48. [Google Scholar]
  10. M. Costabel, M. Dalla Riva, M. Dauge and P. Musolino, Converging expansions for Lipschitz self-similar perforations of a plane sector. Integral Equ. Oper. Theory 88 (2017) 401–449. [CrossRef] [Google Scholar]
  11. M. Dalla Riva, Potential theoretic methods for the analysis of singularly perturbed problems in linearized elasticity. Ph.D. thesis, University of Padova (2008). [Google Scholar]
  12. M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 771–794. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Dalla Riva and M. Lanza de Cristoforis, Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach. Eur. Math. J. 1 (2010) 31–58. [Google Scholar]
  14. M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach. Complex Anal. Oper. Theory 5 (2011) 811–833. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients. J. Appl. Funct. Anal. 5 (2010) 10–30. [MathSciNet] [Google Scholar]
  16. M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole. J. Differ. Equ. 252 (2012) 6337–6355. [CrossRef] [Google Scholar]
  17. M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a planar domain with a small hole. J. Math. Anal. Appl. 422 (2015) 37–55. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Dalla Riva, P. Musolino and S.V. Rogosin, Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole. Asymptotic Anal. 92 (2015) 339–361. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Dalla Riva, P. Musolino and R. Pukhtaievych, Series expansion for the effective conductivity of a periodic dilute composite with thermal resistance at the two-phase interface. Asymptotic Anal. 111 (2019) 217–250. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino, Singularly Perturbed Boundary Value Problems: A Functional Analytic Approach. Springer Nature, Cham (2021). [CrossRef] [Google Scholar]
  21. M. Dalla Riva, P. Luzzini and P. Musolino, Multi-parameter analysis of the obstacle scattering problem. Inverse Prob. 38 (2022) 17. [Google Scholar]
  22. M. Dalla Riva, P. Luzzini, P. Musolino and R. Pukhtaievych, Dependence of effective properties upon regular perturbations. In: Mechanics and Physics of Structured Media: Asymptotic and Integral Equations Methods of Leonid Filshtinsky, edited by I. Andrianov, S. Gluzman and V. Mityushev. Elsevier (2022) 271–301. [Google Scholar]
  23. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  24. F. Feppon and H. Ammari, High order topological asymptotics: reconciling layer potentials and compound asymptotic expansions. Multiscale Model. Simul.. Preprint hal-03440755. (2021). [Google Scholar]
  25. F. Feppon and H. Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes. SAM Research Report No. 2021-35. Preprint hal-03372593 (2021). [Google Scholar]
  26. G.B. Folland, Introduction to Partial Differential Equations, 2nd edition. Princeton University Press, Princeton, NJ (1995). [Google Scholar]
  27. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1983). [Google Scholar]
  28. H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65 (2004) 194–208. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Hájek and M. Johanis, Smooth Analysis in Banach Spaces. Vol. 19 of de Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (2014). [CrossRef] [Google Scholar]
  30. F. Henríquez and C. Schwab, Shape holomorphy of the Calderón projector for the Laplacian in ℝ2. Integral Equ. Oper. Theory 93 (2021) 40. [CrossRef] [Google Scholar]
  31. O. Ivanyshyn Yaman and F. Le Louër, Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems. Inverse Prob. 32 (2016) 24. [Google Scholar]
  32. C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy. Math. Models Methods Appl. Sci. 27 (2017) 2229–2259. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Kress, Linear Integral Equations, 3rd edition. Applied Mathematical Sciences. Vol. 82. Springer-Verlag, New York (2014). [CrossRef] [Google Scholar]
  34. R. Kress and L. Päivärinta, On the far field in obstacle scattering. SIAM J. Appl. Math. 59 (1999) 1413–1426. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Lanza de Cristoforis, Asymptotic behavior of the conformal representation of a Jordan domain with a small hole in Schauder spaces. Comput. Methods Funct. Theory 2 (2002) 1–27. [Google Scholar]
  36. M. Lanza de Cristoforis, A domain perturbation problem for the Poisson equation. Complex Var. Theory Appl. 50 (2005) 851–867. [MathSciNet] [Google Scholar]
  37. M. Lanza de Cristoforis, Perturbation problems in potential theory, a functional analytic approach. J. Appl. Funct. Anal. 2 (2007) 197–222. [MathSciNet] [Google Scholar]
  38. M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52 (2007) 945–977. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Anal. München 28 (2008) 63–93. [Google Scholar]
  40. M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of a non-linear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 269–303. [CrossRef] [MathSciNet] [Google Scholar]
  41. M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients. Far East J. Math. Sci. (FJMS) 52 (2011) 75–120. [MathSciNet] [Google Scholar]
  42. M. Lanza de Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator. J. Integral Equ. Appl. 25 (2013) 21–46. [Google Scholar]
  43. M. Lanza de Cristoforis and L. Preciso, On the analyticity of the Cauchy integral in Schauder spaces. J. Integral Equ. Appl. 11 (1999) 363–391. [Google Scholar]
  44. M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density. J. Integral Equ. Appl. 16 (2004) 137–174. [Google Scholar]
  45. M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In: Analytic Methods of Analysis and Differential Equations: AMADE 2006. Camb. Sci. Publ, Cambridge (2008) 193–220. [Google Scholar]
  46. F. Le Louër, On the Fréchet derivative in elastic obstacle scattering. SIAM J. Appl. Math. 72 (2012) 1493–1507. [CrossRef] [MathSciNet] [Google Scholar]
  47. P. Luzzini and P. Musolino, Perturbation analysis of the effective conductivity of a periodic composite. Netw. Heterog. Media 15 (2020) 581–603. [CrossRef] [MathSciNet] [Google Scholar]
  48. P. Luzzini, P. Musolino and R. Pukhtaievych, Shape analysis of the longitudinal flow along a periodic array of cylinders. J. Math. Anal. Appl. 477 (2019) 1369–1395. [CrossRef] [MathSciNet] [Google Scholar]
  49. V. Maz’ya, S. Nazarov and B. Plamenevskii, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I. Birkhäuser, Basel (2000). [Google Scholar]
  50. V. Maz’ya, S. Nazarov and B. Plamenevskii, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II. Birkhäuser, Basel (2000). [Google Scholar]
  51. V.G. Maz’ya, A.B. Movchan and M.J. Nieves, Green’s Kernels and Meso-Scale Approximations in Perforated Domains. Lecture Notes in Mathematics. Vol. 2077. Springer, Berlin (2013). [Google Scholar]
  52. A.D. Michal, M. Wyman, Characterization of complex couple spaces, Ann. Math. 42 (1941) 247–250. [CrossRef] [MathSciNet] [Google Scholar]
  53. G.A. Muñoz, Y. Sarantopoulos and A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps. Stud. Math. 134 (1999) 1–33. [CrossRef] [Google Scholar]
  54. R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Prob. 10 (1994) 431–447. [CrossRef] [Google Scholar]
  55. R. Potthast, Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. J. Inverse Ill-Posed Probl. 4 (1996) 67–84. [CrossRef] [MathSciNet] [Google Scholar]
  56. R. Potthast, Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci. 19 (1996) 1157–1175. [CrossRef] [MathSciNet] [Google Scholar]
  57. G. Prodi and A. Ambrosetti, Analisi Non Lineare. Editrice Tecnico Scientifica, Pisa (1973). [Google Scholar]
  58. R. Pukhtaievych, Effective conductivity of a periodic dilute composite with perfect contact and its series expansion. Z. Angew. Math. Phys. 69 (2018) 22. [CrossRef] [Google Scholar]
  59. J. Schauder, Potentialtheoretische Untersuchungen. Math. Z. 33 (1931) 602–640. [CrossRef] [MathSciNet] [Google Scholar]
  60. J. Schauder, Bemerkung zu meiner Arbeit “Potentialtheoretische Untersuchungen I (Anhang)”. Math. Z. 35 (1932) 536–538. [Google Scholar]
  61. A.E. Taylor, Analysis in complex Banach spaces. Bull. Am. Math. Soc. 49 (1943) 652–669. [CrossRef] [Google Scholar]
  62. T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data. Springer Tracts in Natural Philosophy. Vol. 31. Springer-Verlag, New York (1988). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you