Open Access
Issue
ESAIM: M2AN
Volume 57, Number 1, January-February 2023
Page(s) 1 - 27
DOI https://doi.org/10.1051/m2an/2022078
Published online 12 January 2023
  1. J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis. John Wiley & Sons Inc., New York (1976). [Google Scholar]
  2. P. Ciarlet, Jr., E. Jamelot and F.D. Kpadonou, Domain decomposition methods for the diffusion equation with low-regularity solution. Comput. Math. App. 74 (2017) 2369–2384. [Google Scholar]
  3. P. Ciarlet, Jr., L. Giret, E. Jamelot and F.D. Kpadonou, Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients. ESAIM: Math. Modell. Numer. Anal. 52 (2018) 2003–2035. [CrossRef] [EDP Sciences] [Google Scholar]
  4. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465–476. [Google Scholar]
  5. M.G. Larson and A. Målqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108 (2008) 487–500. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods. Math. Comp. 75 (2006) 1659–1674. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Vohralk, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comp. 79 (2010) 2001–2032. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Wohlmuth and R. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Math. Comp. 68 (1999) 1347–1378. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.F. Wheeler and I. Yotov, A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43 (2005) 1021–1042. [Google Scholar]
  10. M. Vohralk, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45 (2007) 1570–1599. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Jamelot, A.-M. Baudron and J.-J. Lautard, Domain decomposition for the SPN solver MINOS. Transp. Theory Stat. Phys. 41 (2012) 495–512. [Google Scholar]
  12. E. Jamelot and P. Ciarlet, Jr., Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation. J. Comput. Phys. 241 (2013) 445–463. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, Berlin (2004). [CrossRef] [Google Scholar]
  14. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems. In Mathematical Aspects of Finite Element Methods. Vol. 606 of Lecture Notes in Mathematics. (1977) 292–315. [CrossRef] [Google Scholar]
  15. J.-C. Nédélec, Mixed finite elements in ℝ3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  16. D. Boffi, F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods and Applications. Springer-Verlag, Berlin (2013). [CrossRef] [Google Scholar]
  17. L. Giret, Non-conforming domain decomposition for the multigroup neutron SPN equations. Ph.D. thesis, Université Paris Saclay (2018). [Google Scholar]
  18. P. Oswald, On a BPX-preconditioner for P1 elements. Computing 51 (1993) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comp. 64 (1995) 943–972. [MathSciNet] [Google Scholar]
  20. F. Févotte, Une méthode de post-traitement des éléments finis de Raviart-Thomas appliquée à la neutronique. CMAP Seminar, Palaiseau, May 21 (2019). [Google Scholar]
  21. A. Ern and M. Vohralík, A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48 (2010) 198–223. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. [Google Scholar]
  23. M. Bebendorf, A note on the Poincaré inequality for convex domains. Zeitschrift für Analysis und ihre Anwendungen 22 (2003) 751–756. [CrossRef] [Google Scholar]
  24. W. Prager and J.L. Synge, Approximation in elasticity based on the concept of functions spaces. Q. Appl. Math. 5 (1947) 241–269. [CrossRef] [Google Scholar]
  25. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 40 of Classics in Applied Mathmetics. SIAM (2002). [Google Scholar]
  26. I. Cheddadi, R. Fučík, M.I. Prieto and M. Vohralk, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. ESAIM: Math. Modell. Numer. Anal. 43 (2009) 867–888. [CrossRef] [EDP Sciences] [Google Scholar]
  27. R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78 (1998) 479–493. [Google Scholar]
  28. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. [Google Scholar]
  29. I. Babuška, B.A. Szabo and I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515–545. [CrossRef] [MathSciNet] [Google Scholar]
  30. W. Cao, W. Huang and R.D. Russell, An r-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149 (1999) 221–244. [CrossRef] [MathSciNet] [Google Scholar]
  31. I. Babuška, M. Suri, The p and hp versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. [CrossRef] [MathSciNet] [Google Scholar]
  32. P. Daniel, A. Ern, I. Smears and M. Vohralk, An adaptive hp-refinement strategy with computable guaranteed bound on the error reduction factor. Comput. Math. Applic. 76 (2018) 967–983. [CrossRef] [Google Scholar]
  33. J. Lang, W. Cao, W. Huang and R.D. Russell, A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl. Numer. Math. 46 (2003) 75–94. [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Available at: https://perso.univ-rennes1.fr/monique.dauge/core/index.html (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you