Open Access
Volume 57, Number 1, January-February 2023
Page(s) 29 - 67
Published online 12 January 2023
  1. J.H. Adler and V. Nistor, Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D. Math. Comp. 84 (2015) 2191–2220. [Google Scholar]
  2. B. Ammann and V. Nistor, Weighted Sobolev spaces and regularity for polyhedral domains. Comput. Methods Appl. Mech. Eng. 196 (2007) 3650–3659. [CrossRef] [Google Scholar]
  3. R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. [Google Scholar]
  4. T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, edited by B.G. Teubner. Stuttgart (1999). [Google Scholar]
  5. I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33 (1979) 447–471. [Google Scholar]
  6. C. Bacuta, V. Nistor and L.T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates. Numer. Funct. Anal. Optim. 26 (2005) 613–639. [Google Scholar]
  7. C. Bacuta, V. Nistor and L.T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. II. Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28 (2007) 775–824. [Google Scholar]
  8. C. Băcuţă, H. Li and V. Nistor, Differential operators on domains with conical points: precise uniform regularity estimates. Rev. Roumaine Math. Pures Appl. 62 (2017) 383–411. [Google Scholar]
  9. A. Cangiani, Z. Dong and E.H. Georgoulis, hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. [Google Scholar]
  10. M. Costabel, Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13 (1990) 498–552. [Google Scholar]
  11. P.J. Davis, Interpolation and Approximation. Dover Publications Inc., New York (1975). [Google Scholar]
  12. D. Devaud, Petrov–Galerkin space-time hp-approximation of parabolic equations in H1/2. IMA J. Numer. Anal. 40 (2020) 2717–2745. [CrossRef] [MathSciNet] [Google Scholar]
  13. G.I. Eskin, Boundary value problems for elliptic pseudodifferential equations, in Vol. 52 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1981). [Google Scholar]
  14. B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case. IMA J. Numer. Anal. 20 (2000) 203–234. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92 (2021) 27–36. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Gantner and R. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM Math. Model. Numer. Anal. 55 (2021) 283–299. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. F.D. Gaspoz and P. Morin, Approximation classes for adaptive higher order finite element approximation. Math. Comp. 83 (2014) 2127–2160. [Google Scholar]
  18. W. Gautschi, Numerical integration over the square in the presence of algebraic/logarithmic singularities with an application to aerodynamics. Numer. Algorithms 61 (2012) 275–290. [Google Scholar]
  19. M. Griebel, D. Oeltz and P. Vassilevski, Space-time approximation with sparse grids. SIAM J. Sci. Comput. 28 (2006) 701–727. [Google Scholar]
  20. A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs. SIAM J. Control Optim. 51 (2013) 2442–2471. [Google Scholar]
  21. U. Langer and M. Zank, Efficient direct space-time finite element solvers for parabolic initial-boundary value problems in anisotropic Sobolev spaces. SIAM J. Sci. Comput. 43 (2021) A2714–A2736. [Google Scholar]
  22. U. Langer, S.E. Moore and M. Neumüller, Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306 (2016) 342–363. [Google Scholar]
  23. H. Li, A. Mazzucato and V. Nistor, Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37 (2010) 41–69. [MathSciNet] [Google Scholar]
  24. V. Maźya and J. Rossmann, Elliptic equations in polyhedral domains, in Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  25. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  26. M. Montardini, M. Negri, G. Sangalli and M. Tani, Space-time least-squares isogeometric method and efficient solver for parabolic problems. Math. Comp. 89 (2020) 1193–1227. [Google Scholar]
  27. A. Pazy, Semigroups of linear operators and applications to partial differential equations, in Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  28. D. Schötzau and C. Schwab, Time discretization of parabolic problems by the #-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38 (2000) 837–875. [Google Scholar]
  29. D. Schötzau and C. Schwab, hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1121–1126. [CrossRef] [MathSciNet] [Google Scholar]
  30. C. Schwab, Numerical mathematics and scientific computation, in p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, Oxford University Press, New York (1998). [Google Scholar]
  31. C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp. 78 (2009) 1293–1318. [Google Scholar]
  32. C. Schwab and R. Stevenson, Fractional space-time variational formulations of (Navier-)Stokes equations. SIAM J. Math. Anal. 49 (2017) 2442–2467. [Google Scholar]
  33. O. Steinbach, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15 (2015) 551–566. [Google Scholar]
  34. O. Steinbach and A. Missoni, A note on a modified Hilbert transform. Applicable Anal. (2022) 1–8. [CrossRef] [Google Scholar]
  35. O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52 (2020) 154–194. [CrossRef] [MathSciNet] [Google Scholar]
  36. O. Steinbach and M. Zank, A note on the efficient evaluation of a modified Hilbert transformation. J. Numer. Math. 29 (2021) 47–61. [Google Scholar]
  37. R. Stevenson and J. Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. 41 (2021) 28–47. [CrossRef] [MathSciNet] [Google Scholar]
  38. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin (2006). [Google Scholar]
  39. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition. Johann Ambrosius Barth, Heidelberg (1995). [Google Scholar]
  40. M. Zank, An exact realization of a modified Hilbert transformation for space-time methods for parabolic evolution equations. Comput. Methods Appl. Math. 21 (2021) 479–496. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you