Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 1, January-February 2023
|
|
---|---|---|
Page(s) | 271 - 297 | |
DOI | https://doi.org/10.1051/m2an/2022068 | |
Published online | 03 February 2023 |
- G. Fulford and J. Blake, Muco-ciliary transport in the lung. J. Theor. Biol. 121 (1986) 381–402. [CrossRef] [Google Scholar]
- L. Lacouture, A numerical method to solve the Stokes problem with punctual force in source term. C. R. Mécanique 343 (2015) 187–191. [CrossRef] [Google Scholar]
- A. Allendes, F. Fuica, E. Otárola and D. Quero, An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations. SIAM J. Sci. Comput. 41 (2019) A2967–A2998. [CrossRef] [Google Scholar]
- F. Fuica, E. Otárola and D. Quero, Error estimates for optimal control problems involving the Stokes system and Dirac measures. Appl. Math. Optim. 84 (2021) 1717–1750. [CrossRef] [MathSciNet] [Google Scholar]
- J.J.L. Higdon, The generation of feeding currents by flagellar motions. J. Fluid Mech. 94 (1979) 305–330. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317–328. [Google Scholar]
- N. Liron and R. Shahar, Stokes flow due to a Stokeslet in pipe. J. Fluid Mech. 86 (1978) 727–744. [CrossRef] [MathSciNet] [Google Scholar]
- G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer, New York (2011). [Google Scholar]
- V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics. Vol. 5. Springer, Berlin (1986). [CrossRef] [Google Scholar]
- V. John, Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics. Vol. 51. Springer (2016). [CrossRef] [Google Scholar]
- R. Teman, Navier-Stokes Equations, 3rd edition. Elsevier Science Publishers B. V, Amsterdam (1984). [Google Scholar]
- A. Allendes, E. Otárola and A.J. Salgado, A posteriori error estimates for the stationary Navier-Stokes equations with Dirac measures. SIAM J. Sci. Comput. 42 (2020) A1860–A1884. [CrossRef] [Google Scholar]
- E. Otárola and A.J. Salgado, A weighted setting for the stationary Navier-Stokes equations under singular forcing. Appl. Math. Lett. 90 (2020) 105933. [CrossRef] [MathSciNet] [Google Scholar]
- F. Lepe, E. Otárola and D. Quero, Error estimates for FEM discretizations of the Navier-Stokes equations with Dirac measures. J. Sci. Comput. 87 (2021) 97. [CrossRef] [Google Scholar]
- R. Araya, E. Behrens and R. Rodriguez, A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193–216. [CrossRef] [MathSciNet] [Google Scholar]
- A. Allendes, E. Otárola and A.J. Salgado, A posteriori error estimates for the Stokes problem with singular sources. Comput. Methods Appl. Mech. Eng. 345 (2019) 1007–1032. [CrossRef] [Google Scholar]
- T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. [Google Scholar]
- I. Babuška, Error bounds for the finite element method. Numer. Anal. 16 (1971) 322–333. [Google Scholar]
- F. Fuica, F. Lepe, E. Otárola and D. Quero, A posteriori error estimates in W1,p × Lp spaces for the Stokes systems with Dirac measures. Comput. Math. Appl. 94 (2021) 47–59. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spacea and applications. Numer. Math. 132 (2016) 85–130. [CrossRef] [MathSciNet] [Google Scholar]
- E. Otárola and A.J. Salgado, On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra. Numer. Math. 151 (2022) 185–218. [CrossRef] [MathSciNet] [Google Scholar]
- R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. [Google Scholar]
- P. Houston and T.P. Wihler, Discontinuous Galerkin methods for problems with Dirace delta source. ESAIM: M2AN 46 (2012) 1467–1483. [CrossRef] [EDP Sciences] [Google Scholar]
- B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
- H. Chen, J. Li and W. Qiu, Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anal. 36 (2016) 437–462. [MathSciNet] [Google Scholar]
- G. Fu, W. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49 (2015) 225–256. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Leng and Y. Chen, Adaptive hybridizable discontinuous methods for nonstationary convection diffusion problems. Adv. Comput. Math. 46 (2020) 50. [CrossRef] [MathSciNet] [Google Scholar]
- W. Qiu, J. Shen and K. Shi, An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87 (2018) 69–93. [Google Scholar]
- S.-C. Soon, B. Cockburn and H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80 (2009) 1058–1092. [CrossRef] [Google Scholar]
- H. Chen, W. Qiu and K. Shi, A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333 (2018) 287–310. [Google Scholar]
- N.C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time harmonic Maxwell’s equations. J. Comput. Phys. 230 (2011) 7151–7175. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn and J. Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47 (2009) 1092–1125. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire and F.-J. Sayas, Analysis of HDG methods for Stokes flow. Math. Comput. 80 (2011) 723–760. [CrossRef] [Google Scholar]
- G. Fu, Y. Jin and W. Qiu, Parameter-free superconvergence H(div)-conforming HDG methods for the Brinkman equations. IMA J. Numer. Anal. 39 (2019) 957–982. [CrossRef] [MathSciNet] [Google Scholar]
- H. Leng and H. Chen, Adaptive HDG methods for the Brinkman equations with application to optimal control. J. Sci. Comput. 87 (2021) 46. [CrossRef] [Google Scholar]
- B. Cockburn and W. Zhang, A posteriori error estimates for HDG methods. J. Sci. Comput. 51 (2012) 582–607. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn and W. Zhang, A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51 (2013) 676–693. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, M. Solano and P. Vega, Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39 (2019) 1502–1528. [Google Scholar]
- L.F. Gatica and F.A. Sequeira, A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75 (2018) 1191–1212. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, M. Solano and P. Vega, A posteriori error analysis of an HDG method for the Oseen problem. Appl. Numer. Math. 146 (2019) 291–308. [CrossRef] [MathSciNet] [Google Scholar]
- H. Leng, Adaptive HDG methods for the steady-state incompressible Navier-Stokes equations. J. Sci. Comput. 87 (2021) 37. [CrossRef] [Google Scholar]
- H. Leng and Y. Chen, A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source. ESAIM: M2AN 56 (2022) 385–406. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Rhebergen and G.N. Wells, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55 (2017) 1982–2003. [Google Scholar]
- S. Rhebergen and G.N. Wells, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76 (2018) 1484–1501. [CrossRef] [MathSciNet] [Google Scholar]
- S. Rhebergen and G.N. Wells, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. [CrossRef] [Google Scholar]
- R.A. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
- E.D. Svensson and S. Larsson, Pointwise a posteriori error estimates for the Stokes equations in polyhedral domains. Preprint (2006). [Google Scholar]
- K.L.A. Kirk and S. Rhebergen, Analysis of a pressure-robost hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81 (2019) 881–897. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86 (2017) 1643–1670. [Google Scholar]
- D.A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 1303–1330. [CrossRef] [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications (Berlin) [Mathematics and Applications]. Vol. 69. Springer, Heidelberg (2012) MR2882148. [Google Scholar]
- O.A. Karakashian and W.N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998) 93–120. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (2008). [Google Scholar]
- A. Ern and J.L. Guermond, Finite Elements I: Approximation and Interpolation. Vol. 72 of Texts in Applied Mathematics. Springer (2021). [Google Scholar]
- O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [Google Scholar]
- R.B. Kellogg and J.E. Osborn, A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21 (1976) 397–431. [CrossRef] [Google Scholar]
- G. Acosta and R.G. Durán, Divergence Operator and Related Inequalities. SpringerBriefs in Mathematics.. Springer, New York (2017). [Google Scholar]
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, New York (1996). [Google Scholar]
- R. Verfürth, A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (1998) 641–663. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.