Open Access
Volume 57, Number 2, March-April 2023
Page(s) 423 - 443
Published online 03 March 2023
  1. F.K. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates. Phys. Rev. A 63 (2001) 043604. [Google Scholar]
  2. J. Arbunich, C. Klein and C. Sparber, On a class of derivative nonlinear Schrödinger-type equations in two spatial dimensions. ESAIM Math. Model. Numer. Anal. 53 (2019) 1477–1505. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. M. Birem and C. Klein, Multidomain spectral method for Schrödinger equations. Adv. Comput. Math. 42 (2016) 395–423. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.L. Bona, W.R. McKinney and J.M. Restrepo, Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation. J. Nonlinear Sci. 10 (2000) 603–638. [Google Scholar]
  5. V.S. Buslaev and V.E. Grikurov, Simulation of instability of bright solitons for NLS with saturating nonlinearity. Math. Comput. Simul. 56 (2001) 539–546. [Google Scholar]
  6. J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions. Calc. Var. Partial Differ. Equ. 36 (2009) 481–492. [CrossRef] [Google Scholar]
  7. R. Carles and C. Sparber, Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Rev. Math. Phys. 33 (2021) 2150004. [Google Scholar]
  8. T. Cazenave, Semilinear Schrödinger equations, In Vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York (2003). [CrossRef] [Google Scholar]
  9. T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85 (1982) 549–561. [CrossRef] [Google Scholar]
  10. S. Cingolani, L. Jeanjean and S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM Control Optim. Calc. Var. 15 (2009) 653–675. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. S. De Bièvre, F. Genoud and S. Rota Nodari, Orbital stability: analysis meets geometry, in Nonlinear Optical and Atomic Systems, In Vol. 2146 of Lecture Notes in Math., Springer, Cham (2015) 147–273. [Google Scholar]
  12. A. Gammal, T. Frederico, L. Tomio and P. Chomaz, Atomic Bose-Einstein condensation with three-body intercations and collective excitations. J. Phys. B 33 (2000) 4053–4067. [Google Scholar]
  13. V.E. Grikurov, Soliton’s rebuilding in one-dimensional Schrödinger model with polynomial nonlinearity. IMA Preprint Series 1320 (1995). [Google Scholar]
  14. M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74 (1987) 160–197. [CrossRef] [MathSciNet] [Google Scholar]
  15. I.D. Iliev and K.P. Kirchev, Stability and instability of solitary waves for one-dimensional singular Schrödinger equations. Differ. Integral Equ. 6 (1993) 685–703. [Google Scholar]
  16. L. Jeanjean and S.-S. Lu, On global minimizers for a mass constrained problem. Calc. Var. Partial Differ. Equ. 6 (2022) 18. [Google Scholar]
  17. R. Killip, T. Oh, O. Pocovnicu and M. Vişan, Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on ℝ3. Arch. Ration. Mech. Anal. 225 (2017) 469–548. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations. Electron. Trans. Numer. Anal. 29 (2007/08) 116–135. [MathSciNet] [Google Scholar]
  19. C. Klein and N. Stoilov, Numerical study of the transverse stability of the Peregrine solution. Stud. Appl. Math. 145 (2020) 36–51. [Google Scholar]
  20. C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014) 26. [Google Scholar]
  21. B.J. LeMesurier, G. Papanicolaou, C. Sulem and P.-L. Sulem, Focusing and multi-focusing solutions of the nonlinear Schrödinger equation. Phys. D 31 (1988) 78–102. [Google Scholar]
  22. M. Lewin and S. Rota Nodari, Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation. NoDEA Nonlinear Differ. Equ. Appl. 22 (2015) 673–698. [Google Scholar]
  23. M. Lewin and S. Rota Nodari, The double-power nonlinear Schrödinger equations and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. Partial Differ. Equ. 59 (2020) 48. [CrossRef] [Google Scholar]
  24. B. Malomed, Vortex solitons: Old results and new perspectives. Phys. D 399 (2019) 108–137. [Google Scholar]
  25. H. Michinel, J. Campo-Táboas, R. Garca-Fernández, J.R. Salgueiro and M.L. Quiroga-Teixeiro, Liquid light condensates. Phys. Rev. E 65 (2002) 066604. [Google Scholar]
  26. M. Ohta, Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity. Kodai Math. J. 18 (1995) 68–74. [Google Scholar]
  27. K.I. Pushkarov, D.I. Pushkarov and I.V. Tomov, Self-action of light beams in nonlinear media: soliton solutions. Opt. Quantum Electron. 11 (1979) 471–478. [Google Scholar]
  28. C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Springer-Verlag, New York (1999). [Google Scholar]
  29. T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32 (2007) 1281–1343. [CrossRef] [Google Scholar]
  30. L.N. Trefethen, Spectral methods in MATLAB, In Vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). [Google Scholar]
  31. J.A.C. Weideman and S.C. Reddy, A MATLAB differentiation matrix suite. ACM Trans. Math. Software 26 (2000) 465–519. [CrossRef] [MathSciNet] [Google Scholar]
  32. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87 (1982/83) 567–576. [Google Scholar]
  33. M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985) 472–491. [Google Scholar]
  34. X. Zhang, On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations. J. Differ. Equ. 230 (2006) 422–445. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you