Open Access
Volume 57, Number 2, March-April 2023
Page(s) 445 - 466
Published online 23 March 2023
  1. N. Balzani and M. Rumpf, A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound. 14 (2012) 431–454. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–467. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett, H. Garcke and R. Nürnberg, Numerical approximation of gradient flows for closed curves in ℝd. IMA J. Numer. Anal. 30 (2010) 4–60. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numer. Math. 120 (2012) 489–542. [Google Scholar]
  5. S. Bartels, A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal. 33 (2013) 1115–1125. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bondarava, Stability and error analysis for a numerical scheme to approximate elastic flow. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2015). [Google Scholar]
  7. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics, 3rd edition. Vol. 15. Springer (2008). [Google Scholar]
  8. K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, in Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994). Vol. 326 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1994) 100–108. [Google Scholar]
  9. K. Deckelnick and G. Dziuk, Error analysis for the elastic flow of parametrized curves. Math. Comp. 78 (2009) 645–671. [Google Scholar]
  10. U. Dierkes, S. Hildebrandt and F. Sauvigny, Minimal surfaces, in Vol. 339 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edition. Springer, Heidelberg (2010). With assistance and contributions by A. Küster and R. Jakob. [Google Scholar]
  11. G. Dziuk, E. Kuwert and R. Schätzle, Evolution of elastic curves in ℝn: existence and computation. SIAM J. Math. Anal. 33 (2002) 1228–1245 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  12. C.M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal. 37 (2017) 543–603. [MathSciNet] [Google Scholar]
  13. C.M. Elliott, B. Stinner and C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements. J. R. Soc. Interface 9 (2012) 3027–3044. [CrossRef] [PubMed] [Google Scholar]
  14. J. Hu and B. Li, Evolving finite element methods with an artificial tangential velocity for mean curvature flow and Willmore flow. Numer. Math. 152 (2022) 127–181. [CrossRef] [MathSciNet] [Google Scholar]
  15. N. Koiso, On the motion of a curve towards elastica, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992). Vol. 1 of Sémin. Congr. Soc. Math. France, Paris (1996) 403–436. [Google Scholar]
  16. B. Kovács, B. Li and C. Lubich, A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numer. Math. 149 (2021) 595–643. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Langer and D.A. Singer, Curve straightening and a minimax argument for closed elastic curves. Topology 24 (1985) 75–88. [CrossRef] [MathSciNet] [Google Scholar]
  18. C.-C. Lin and H.R. Schwetlick, On a flow to untangle elastic knots. Calc. Var. Part. Differ. Equ. 39 (2010) 621–647. [CrossRef] [Google Scholar]
  19. J.A. Mackenzie, M. Nolan, C.F. Rowlatt and R.H. Insall, An adaptive moving mesh method for forced curve shortening flow. SIAM J. Sci. Comput. 41 (2019) A1170–A1200. [CrossRef] [PubMed] [Google Scholar]
  20. C. Mantegazza, A. Pluda and M. Pozzetta, A survey of the elastic flow of curves and networks. Milan J. Math. 89 (2021) 59–121. [CrossRef] [MathSciNet] [Google Scholar]
  21. The Mathworks Inc., MATLAB version (R2022a). Natick, Massachusetts (2022). [Google Scholar]
  22. A. Polden, Curves and surfaces of least total curvature and fourth-order flows. Ph.D. thesis, Universität Tübingen (1996). [Google Scholar]
  23. P. Pozzi, Computational anisotropic Willmore flow. Interfaces Free Bound. 17 (2015) 189–232. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Pozzi, On an elastic flow for parametrized curves in ℝn suitable for numerical purposes. Preprint arXiv:2205.04178 (2022). [Google Scholar]
  25. P. Pozzi and B. Stinner, On motion by curvature of a network with a triple junction. SMAI J. Comput. Math. 7 (2021) 27–55. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. Truesdell, The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.) 9 (1983) 293–310. [CrossRef] [MathSciNet] [Google Scholar]
  27. Y. Wen, L2 flow of curve straightening in the plane. Duke Math. J. 70 (1993) 683–698. [MathSciNet] [Google Scholar]
  28. Y. Wen, Curve straightening flow deforms closed plane curves with nonzero rotation number to circles. J. Differ. Equ. 120 (1995) 89–107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you