Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 817 - 839
DOI https://doi.org/10.1051/m2an/2022101
Published online 30 March 2023
  1. E. Allgower and K. Georg, Introduction to Numerical Continuation Methods. Vol. 45 of Classics in Applied Mathematics. Soc. for Industrial and Applied Math, Philadelphia, PA, USA, 2003. [Google Scholar]
  2. M.D. Ardema, Solution of the minimum time-to-climb problem by matched asymptotic expansions. AIAA J. 14 (1976) 843–850. [CrossRef] [Google Scholar]
  3. M.D. Ardema, Singular perturbations in flight mechanics . Ph.D. thesis (1977). [Google Scholar]
  4. J.F. Barman, H. Erzenberg, J.D. McLean, Fixed-range optimum trajectories for short-haul aircraft. Technical note NASA TN D-8115. NASA Ames Research Center (1975). [Google Scholar]
  5. H.G. Bock and K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proc. Vol. 17 (1984) 1603–1608. 9th IFAC World Congress: A Bridge Between Control Science and Technology, Budapest, Hungary, 1984. [CrossRef] [Google Scholar]
  6. J.F. Bonnans, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot, Bocop – a collection of examples, Technical reportINRIA(2016). [Google Scholar]
  7. B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory. Springer-Verlag, Berlin, Heidelberg, Paris (2003). [Google Scholar]
  8. B. Bonnard, L. Faubourg, G. Launay and E. Trélat, Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control Syst. 9 (2003) 155–199. [CrossRef] [Google Scholar]
  9. B. Bonnard, L. Faubourg and E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux. Springer-Verlag, Berlin, Heidelberg, New-York (2006). [CrossRef] [Google Scholar]
  10. B. Bonnard, M. Claeys, O. Cots and P. Martinon, Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance. Acta App. Math. 135 (2015) 5–45. [CrossRef] [Google Scholar]
  11. R. Bulirsch and J. Stoer, Introduction to Numerical Analysis. Springer, New-York (2002). [Google Scholar]
  12. J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2012) 177–196. [CrossRef] [MathSciNet] [Google Scholar]
  13. A.J. Calise and D.S. Naidu, Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guidance Control Dyn. 24 (2001) 1057–1078. [Google Scholar]
  14. A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N.M. Thiéry and P. Zimmermann, Calcul mathématique avec. Sage. Technical report (2013). [Google Scholar]
  15. J.R. Cash, The numerical solution of nonlinear two-point boundary value problems using iterated deferred correction – a survey, Opuscula Math. 26 (2006) 269–287. [MathSciNet] [Google Scholar]
  16. J.R. Cash, G. Moore, R.W. Wright, An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27 (2001) 245–266. [CrossRef] [Google Scholar]
  17. O. Cots, Geometric and numerical methods for a state constrained minimum time control problem of an electric vehicle. ESAIM: COCV 23 (2017) 1715–1749. [EDP Sciences] [Google Scholar]
  18. O. Cots, P. Delpy, J. Gergaud and D. Goubinat, On the minimum time optimal control problem of an aircraft in its climbing phase, in EUropean Conference for Aeronautics and Aerospace sciences (EUCASS), Milano (2017). [Google Scholar]
  19. O. Cots, J. Gergaud and D. Goubinat, Time-optimal aircraft trajectories in climbing phase and singular perturbations, IFAC-PapersOnLine 50 (2017) 1625–1630. Proceedings of the 20th World Congress of the International Federation of Automatic Control, IFAC 2017 World Congress, Toulouse, France, 9–14 July 2017. [CrossRef] [Google Scholar]
  20. O. Cots, J. Gergaud and D. Goubinat, Direct and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraft. Optim. Control Appl. Meth. 39 (2018) 281–301. [CrossRef] [Google Scholar]
  21. O. Cots, J. Gergaud and B. Wembe, Homotopic approach for turnpike and singularly perturbed optimal control problems. ESAIM: ProcS 71 (2021) 43–53. Proceedings of FGS’2019 – 19th French-German-Swiss conference on Optimization. [CrossRef] [EDP Sciences] [Google Scholar]
  22. A.F. Espin, Aircraft trajectory optimization using singular optimal control theory. Universidad de Sevilla. Ph.D. thesis, (2014). [Google Scholar]
  23. J. Gergaud, Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Habilitation à diriger des recherches, INP-ENSEEIHT-IRIT (2008). [Google Scholar]
  24. D. Goubinat, Contrôle optimal géométrique et méthodes numériques: application à un problème de montée d’un avion, Ph.D. thesis, INP-ENSEEIHT (2017). [Google Scholar]
  25. D.G. Hull, Fundamentals of Airplane Flight Mechanics. Springer, Heidelberg (2007). [Google Scholar]
  26. D.H. Jacobson, M.M. Lele and J.L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality constraints. J. Math. Anal. Appl. 35 (1971) 255–284. [CrossRef] [MathSciNet] [Google Scholar]
  27. A.J. Krener, The high order maximal principle and its application to singular extremals. SIAM J. Control Optim. 1 (1977) 256–293. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and maxwell case. Trans. Amer. Math. Soc. 299 (1987) 225–243. [MathSciNet] [Google Scholar]
  29. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Cont. Optim. 15 (1977) 345–362. [CrossRef] [Google Scholar]
  30. M. Le Merrer, Optimisation de trajectoire d’avion pour la prise en compte du bruit dans la gestion du, vol, Ph.D. thesis, ISAE-SUPAERO (2012). [Google Scholar]
  31. A. Miele, General solutions of optimum problems in nonstationnary flight. National Advisory Comittee for Aeronautics (NACA), Technical memorandum 1388 (1955). [Google Scholar]
  32. A. Miele, Optimum flight paths of turbojet aircraft. Technical memorandum 1389, National Advisory Comittee for Aeronautics (NACA) (1955). [Google Scholar]
  33. N. Moissev, Problèmes mathématiques d’analyse des systèmes. Mir Moscou (1985). [Google Scholar]
  34. N. Nguyen, Singular arc time-optimal climb trajectory of aircraft in a two-dimensional wind field, AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, Keystone, Colorado (2006). [Google Scholar]
  35. D. Poles, Base of Aircraft DAta (BADA) aircraft performance modelling report, Technical ReportEurocontrol (2009). [Google Scholar]
  36. L. Pontryagin, V. Boltianskii, R. Gamkrelidize and E. Mishchenko, The Mathematical Theory of Optimal Processes. Translated from the Russian by K. Trirogoff; edited by L.W. Neustadt (Ed.), Interscience Publishers John Wiley & Sons, New-York-London (1962). [Google Scholar]
  37. J. Verriere, Mécanique du vol, performances Notes de cours, Tome 2, ISAE-Formation ENSICA (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you