Open Access
Volume 57, Number 2, March-April 2023
Page(s) 785 - 815
Published online 27 March 2023
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  2. V. Barbu and M. Röckner, Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal. 209 (2013) 797–834. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. Appl. 93 (2021) 214–229. [CrossRef] [MathSciNet] [Google Scholar]
  4. L’. Baňas and A. Wilke, A posteriori estimates for the stochastic total variation flow. SIAM J. Numer. Anal. 60 (2022) 2657–2680. [CrossRef] [MathSciNet] [Google Scholar]
  5. L’. Baňas, M. Röckner and A. Wilke, Convergent numerical approximation of the stochastic total variation flow. Stoch. Part. Differ. Equ. Anal. Comput. 9 (2021) 437–471. [Google Scholar]
  6. L’. Baňas, M. Röckner and A. Wilke, Convergent numerical approximation of the stochastic total variation flow with linear multiplicative noise: the higher dimensional case. arXiv:2211.04162 (2022). [Google Scholar]
  7. L’. Baňas, M. Röckner and A. Wilke, Correction to: Convergent numerical approximation of the stochastic total variation flow. Stoch. Part. Differ. Equ. Anal. Comput. (2022). DOI: 10.1007/s40072-022-00267-5. [Google Scholar]
  8. P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edition. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York (1999). [CrossRef] [Google Scholar]
  9. V.I. Bogachev, Measure Theory. Vol. I, II, Springer-Verlag, Berlin (2007). [CrossRef] [Google Scholar]
  10. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1 (Ω). Math. Comp. 71 (2002) 147–156. [Google Scholar]
  11. D. Breit, E. Feireisl and M. Hofmanová, Stochastically Forced Compressible Fluid Flows. Vol. 3 of De Gruyter Series in Applied and Numerical Mathematics. De Gruyter, Berlin (2018). [Google Scholar]
  12. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics. 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  13. J. Dieudonné, Sur les espaces de Montel métrisables. C. R. Acad. Sci. Paris 238 (1954) 194–195. [MathSciNet] [Google Scholar]
  14. X. Feng and A. Prohl, Analysis of total variation flow and its finite element approximations. M2AN Math. Model. Numer. Anal. 37 (2003) 533–556. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. I. Gyöngy and N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105 (1996) 143–158. [Google Scholar]
  16. A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42 (1997) 209–216. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Vol. 113 of Graduate Texts in Mathematics, 2nd edition. Springer-Verlag, New York (1991). [Google Scholar]
  18. J.L. Kelley, General Topology. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York (1975). Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. [Google Scholar]
  19. M. Ondreját, A. Prohl and N. Walkington, Numerical approximation of nonlinear SPDE’s. Stoch. Part. Differ. Equ. Anal. Comput. (2022). DOI: 10.1007/s40072-022-00271-9. [Google Scholar]
  20. G. Pisier, Martingales in Banach Spaces. Vol. 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016). [Google Scholar]
  21. J. Simon, Sobolev, Besov and Nikolski fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157 (1990) 117–148. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you