Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 1087 - 1110
DOI https://doi.org/10.1051/m2an/2023009
Published online 12 April 2023
  1. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  2. J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. M2AN. Math. Model. Numer. Anal. 43 (2009) 333–351. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics, Birkhäuser Verlag, Basel (2004). [Google Scholar]
  4. F. Bouchut and T. Morales, A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48 (2010) 1733–1758. [Google Scholar]
  5. Y. Cao, A. Kurganov, Y. Liu and R. Xin, Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models. J. Sci. Comput. 92 (2022) 31. [CrossRef] [Google Scholar]
  6. M.J. Castro, T. Morales de Luna and C. Parés, Well-balanced schemes and path-conservative numerical methods, in Handbook of Numerical Methods for Hyperbolic Problems. Vol. 18 of Handb. Numer. Anal. Elsevier/North-Holland, Amsterdam (2017) 131–175. [CrossRef] [Google Scholar]
  7. M.J. Castro Daz, A. Kurganov and T. Morales de Luna, Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 53 (2019) 959–985. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. Y. Cheng and A. Kurganov, Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun. Math. Sci. 14 (2016) 1643–1663. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y. Cheng, A. Chertock, M. Herty, A. Kurganov and T. Wu, A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80 (2019) 538–554. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Chertock, S. Cui, A. Kurganov and T. Wu, Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Meth. Fluids 78 (2015) 355–383. [CrossRef] [Google Scholar]
  11. A. Chertock, S. Cui, A. Kurganov, S.N. Özcan and E. Tadmor, Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes. J. Comput. Phys. 358 (2018) 36–52. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Chertock, M. Herty and C.N. Özcan, Well-balanced central-upwind schemes for 2 × 2 systems of balance laws, in Theory, Numerics and Applications of Hyperbolic Problems. I. Vol. 236 of Springer Proc. Math. Stat. Springer, Cham (2018) 345–361. [CrossRef] [Google Scholar]
  13. A. Chertock, A. Kurganov, X. Liu, Y. Liu and T. Wu, Well-balancing via flux globalization: applications to shallow water equations with wet/dry fronts. J. Sci. Comput. 90 (2022) 21. [CrossRef] [Google Scholar]
  14. G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [Google Scholar]
  15. H. Darcy, Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux. Vol. 1. Mallet-Bachelier (1857). [Google Scholar]
  16. C. Escalante, M.J. Castro and M. Semplice, Very high order well-balanced schemes for non-prismatic one-dimensional channels with arbitrary shape. Appl. Math. Comput. 398 (2021) 16. [Google Scholar]
  17. A. Flamant, Mécanique appliquée: Hydraulique. Baudry éditeur, Paris (France) (1891). [Google Scholar]
  18. J.M. Gallardo, C. Parés and M. Castro, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227 (2007) 574–601. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Gauckler, Etudes Théoriques et Pratiques sur l’Ecoulement et le Mouvement des Eaux. Gauthier-Villars (1867). [Google Scholar]
  20. N. Gouta and F. Maurel, A finite volume solver for 1d shallow-water equations applied to an actual river. Int. J. Numer. Meth. Fluids 38 (2002) 1–19. [CrossRef] [Google Scholar]
  21. G. Hernández-Dueñas and S. Karni, Shallow water flows in channels. J. Sci. Comput. 48 (2011) 190–208. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26 (2005) 2079–2101. [Google Scholar]
  23. A. Kurganov, Finite-volume schemes for shallow-water equations. Acta Numer. 27 (2018) 289–351. [Google Scholar]
  24. A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141–163. [Google Scholar]
  25. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [Google Scholar]
  26. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [Google Scholar]
  27. A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [Google Scholar]
  28. A. Kurganov, Y. Liu and V. Zeitlin, A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411 (2020) 24. [Google Scholar]
  29. A. Kurganov, Y. Liu and R. Xin, Well-balanced path-conservative central-upwind schemes based on flux globalization. J. Comput. Phys. 474 (2023) 32. [Google Scholar]
  30. P. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Differ. Equ. 1 (2004) 643–689. [CrossRef] [Google Scholar]
  31. P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). [Google Scholar]
  32. P.G. LeFloch and M.D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. J. Comput. Phys. 230 (2011) 7631–7660. [CrossRef] [MathSciNet] [Google Scholar]
  33. K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157–1174. [Google Scholar]
  34. X. Liu, A steady-state-preserving scheme for shallow water flows in channels. J. Comput. Phys. 423 (2020) 22. [Google Scholar]
  35. X. Liu, X. Chen, S. Jin, A. Kurganov and H. Yu, Moving-water equilibria preserving partial relaxation scheme for the Saint-Venant system. SIAM J. Sci. Comput. 42 (2020) A2206–A2229. [CrossRef] [Google Scholar]
  36. R. Manning, On the flow of water in open channel and pipes, in Transactions of the Institution of Civil Engineers of Ireland. Vol. 20 (1891) 161–207. [Google Scholar]
  37. H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [Google Scholar]
  38. C. Parés, Path-conservative numerical methods for nonconservative hyperbolic systems, in Vol. 24 of Quad. Mat. Dept. Math. Seconda Univ. Napoli, Caserta (2009). [Google Scholar]
  39. M. Ricchiuto, An explicit residual based approach for shallow water flows. J. Comput. Phys. 280 (2015) 306–344. [CrossRef] [MathSciNet] [Google Scholar]
  40. B. Sulistyono, L. Wiryanto and S. Mungkasi, A staggered method for simulating shallow water flows along channels with irregular geometry and friction. Int. J. Adv. Sci. Eng. Inf. Technol. 10 (2020) 952–958. [CrossRef] [Google Scholar]
  41. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. [Google Scholar]
  42. M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497–526. [CrossRef] [MathSciNet] [Google Scholar]
  43. Y. Xing, Numerical methods for the nonlinear shallow water equations, in Handbook of Numerical Methods for Hyperbolic Problems. Vol. 18 of Handb. Numer. Anal. Elsevier/North-Holland, Amsterdam (2017) 361–384. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you