Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 467 - 490
DOI https://doi.org/10.1051/m2an/2022093
Published online 23 March 2023
  1. R. Abramov and A. Majda, Discrete approximations with additional conserved quantities: deterministic and statistical behavior. Methods Appl. Anal. 10 (2003) 151–190. [CrossRef] [MathSciNet] [Google Scholar]
  2. N. Ahmed, A. Linke and C. Merdon, On really locking-free mixed finite element methods for the transient incompressible stokes equations. SIAM J. Numer. Anal. 56 (2018) 185–209. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Allendes, G.R. Barrenechea and J. Novo, A divergence-free stabilized finite element method for the evolutionary Navier-Stokes equations. SIAM J. Sci. Comput. 43 (2021) A3809–A3836. [CrossRef] [Google Scholar]
  4. A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two dimensional incompressible flow, Part I. J. Comput. Phys. 1 (1966) 119–143. [CrossRef] [Google Scholar]
  5. D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations-VII, edited by R. Vichnevetsky, D. Knight and G. Richter. IMACS, New Brunswick, NJ (1992) 28–34. [Google Scholar]
  6. C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comp. 44 (1985) 71–79. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics, Springer Berlin Heidelberg, Heidelberg (2013). [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics. Springer New York, New York, NY (2008). [CrossRef] [Google Scholar]
  9. F. Brezzi, T.J.R. Hughes, L.D. Marini and A. Masud, Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22–23 (2005) 119–145. [CrossRef] [Google Scholar]
  10. E. Burman and M.A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence. Numer. Math. 107 (2007) 39–77. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.A. Case, V.J. Ervin, A. Linke and L.G. Rebholz, A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations. SIAM J. Numer. Anal. 49 (2011) 1461–1481. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Charnyi, T. Heister, M.A. Olshanskii and L.G. Rebholz, On conservation laws of Navier-Stokes Galerkin discretizations. J. Comput. Phys. 337 (2017) 289–308. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Charnyi, T. Heister, M.A. Olshanskii and L.G. Rebholz, Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations. Appl. Numer. Math. 141 (2019) 220–233. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.H. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and Stokes’ problem. Numer. Math. 140 (2018) 327–371. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31 (2007) 61–73. [Google Scholar]
  16. J. de Frutos, B. García-Archilla, V. John and J. Novo, Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44 (2018) 195–225. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. de Frutos, B. García-Archilla, V. John and J. Novo, Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization. IMA J. Numer. Anal. 39 (2019) 1747–1786. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. de Frutos, B. García-Archilla and J. Novo, Fully discrete approximations to the time-dependent Navier-Stokes equations with a projection method in time and grad-div stabilization. J. Sci. Comput. 80 (2019) 1330–1368. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.A. Evans and T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations. J. Comput. Phys. 241 (2013) 141–167. [CrossRef] [MathSciNet] [Google Scholar]
  20. G.J. Fix, Finite element models for ocean circulation problems. SIAM J. Appl. Math. 29 (1975) 371–387. [CrossRef] [MathSciNet] [Google Scholar]
  21. K.J. Galvin, A. Linke, L.G. Rebholz and N.E. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection. Comput. Methods Appl. Mech. Eng. 237–240 (2012) 166–176. [CrossRef] [Google Scholar]
  22. B. García-Archilla, V. John and J. Novo, On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows. Comput. Methods Appl. Mech. Eng. 385 (2021) 114032. [CrossRef] [Google Scholar]
  23. B. García-Archilla, V. John and J. Novo, Symmetric pressure stabilization for equal-order finite element approximations to the time-dependent Navier-Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093–1129. [CrossRef] [MathSciNet] [Google Scholar]
  24. N.R. Gauger, A. Linke and P.W. Schroeder, On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond. SMAI J. Comput. Math. 5 (2019) 89–129. [CrossRef] [MathSciNet] [Google Scholar]
  25. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Vol. 5 of Springer Series in Computational Mathematics . Springer Berlin Heidelberg, Berlin, Heidelberg (1986). [CrossRef] [Google Scholar]
  26. V. Girault, R.H. Nochetto and L.R. Scott, Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra. Numer. Math. 131 (2015) 771–822. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Guzmán and M. Neilan, A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32 (2012) 1484–1508. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp. 83 (2013) 15–36. [CrossRef] [Google Scholar]
  29. J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34 (2014) 1489–1508. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Guzmán and M. Neilan, Inf-sup stable finite elements on barycentric refinements producing divergence–free approximations in arbitrary dimensions. SIAM J. Numer. Anal. 56 (2018) 2826–2844. [CrossRef] [MathSciNet] [Google Scholar]
  31. V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44 (2004) 777–788. [Google Scholar]
  32. V. John, Finite Element Methods for Incompressible Flow Problems. Springer, Cham (2016). [CrossRef] [Google Scholar]
  33. V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26 (2005) 1485–1503. [CrossRef] [MathSciNet] [Google Scholar]
  34. V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [CrossRef] [MathSciNet] [Google Scholar]
  35. V. John, P. Knobloch and J. Novo, Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story? Comput. Visual Sci. 19 (2018) 47–63. [CrossRef] [Google Scholar]
  36. J. Könnö and R. Stenberg, H(div)-conforming finite elements for the Binkman problem. Math. Models Methods Appl. Sci. 21 (2011) 2227–2248. [CrossRef] [MathSciNet] [Google Scholar]
  37. P.L. Lederer, Pressure-robust discretizations for Navier-Stokes equations: divergence-free reconstruction for Taylor-Hood elements and high order hybrid discontinuous Galerkin methods. Master’s thesis, Vienna Technical University, Vienna (2016). [Google Scholar]
  38. P.L. Lederer, A. Linke, C. Merdon and J. Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55 (2017) 1291–1314. [CrossRef] [MathSciNet] [Google Scholar]
  39. P.L. Lederer, C. Lehrenfeld and J. Schöberl, Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II. ESAIM: Math. Model. Numer. Anal. 53 (2019) 503–522. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  40. P.L. Lederer, C. Merdon and J. Schöberl, Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods. Numer. Math. 142 (2019) 713–748. [CrossRef] [MathSciNet] [Google Scholar]
  41. A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800. [CrossRef] [Google Scholar]
  42. A. Linke and C. Merdon, On velocity errors due to irrotational forces in the Navier-Stokes momentum balance. J. Comput. Phys. 313 (2016) 654–661. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311 (2016) 304–326. [CrossRef] [Google Scholar]
  44. A. Linke and L.G. Rebholz, Pressure-induced locking in mixed methods for time-dependent Navier-Stokes equations. J. Comput. Phys. 388 (2019) 350–356. [CrossRef] [MathSciNet] [Google Scholar]
  45. A. Linke, G. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM: Math. Model. Numer. Anal. 50 (2016) 289–309. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  46. M. Neilan, Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comp. 84 (2015) 2059–2081. [CrossRef] [MathSciNet] [Google Scholar]
  47. M. Neilan and B. Otus, Divergence-free Scott-Vogelius elements on curved domains. SIAM J. Numer. Anal. 59 (2021) 1090–1116. [CrossRef] [MathSciNet] [Google Scholar]
  48. M.A. Olshanskii, A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Eng. 191 (2002) 5515–5536. [CrossRef] [Google Scholar]
  49. M.A. Olshanskii and L.G. Rebholz, Longer time accuracy for incompressible Navier-Stokes simulations with the EMAC formulation. Comput. Methods Appl. Mech. Eng. 372 (2020) 113369. [CrossRef] [Google Scholar]
  50. M.A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations. Math. Comp. 73 (2004) 1699–1718. [Google Scholar]
  51. A. Palha and M. Gerritsma, A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations. J. Comput. Phys. 328 (2017) 200–220. [CrossRef] [MathSciNet] [Google Scholar]
  52. L.G. Rebholz, An energy- and helicity-conserving finite element scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 45 (2007) 1622–1638. [CrossRef] [MathSciNet] [Google Scholar]
  53. S. Rhebergen and G.N. Wells, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. [CrossRef] [Google Scholar]
  54. M. Schäfer, S. Turek, F. Durst, E. Krause and R. Rannacher, Benchmark Computations of Laminar Flow Around a Cylinder. Vieweg+Teubner Verlag, Wiesbaden (1996) 547–566. [Google Scholar]
  55. P.W. Schroeder, C. Lehrenfeld, A. Linke and G. Lube, Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations. SeMA 75 (2018) 629–653. [CrossRef] [MathSciNet] [Google Scholar]
  56. J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45 (2007) 1269–1286. [CrossRef] [MathSciNet] [Google Scholar]
  57. J. Wang, X. Wang and X. Ye, Finite element methods for the Navier-Stokes equations by H(div) elements. J. Comput. Math. 26 (2008) 410–436. [MathSciNet] [Google Scholar]
  58. S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comp. 74 (2005) 543–554. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you