Open Access
Volume 57, Number 2, March-April 2023
Page(s) 717 - 743
Published online 27 March 2023
  1. D. Azé and J.-B. Hirriart-Urruty, Analyse Variationnelle et Optimisation. Cépadues (2010). [Google Scholar]
  2. R.M. Beam and R.F. Warming, An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22 (1976) 87–110. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Brézis, Opérateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert. Elsevier (1973). [Google Scholar]
  4. L. Brugnano and V. Casulli, Iterative solution of piecewise linear systems. SIAM J. Sci. Comput. 30 (2008) 463–472. [Google Scholar]
  5. C. Chalons, F. Coquel and C. Marmignon, Time-implicit approximation of the multipressure gas dynamics equations in several space dimensions. SIAM 48 (2010) 1678–1706. [Google Scholar]
  6. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955). [Google Scholar]
  7. F. Coulette, E. Franck, P. Helluyn, A. Ratnani and E. Sonnendrcker, Implicit time schemes for compressible fluid models based on relaxation methods. Comput. Fluids 188 (2019) 70–85. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Dacorogna, Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 78. Springer-Verlag, Berlin (1989). [Google Scholar]
  9. J.-P. Demailly, Analyse Numérique et Equations Différentielles-4ème Ed. EDP sciences (2016). [Google Scholar]
  10. I. Demirdzic, Z. Lilek and M. Peric, A collocated finite volume method for predicting flows at all speeds. J. Numer. Methods Fluids 16 (1993) 1029–1050. [Google Scholar]
  11. B. Després, Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension. Comput. Methods Appl. Mech. Eng. 199 (2010) 2669–2679. [CrossRef] [Google Scholar]
  12. B. Després, Numerical Methods for Eulerian and Lagrangian Conservation Laws. Birkhuser Basel (2017). [Google Scholar]
  13. A. Ern and J.-L. Guermond, Éléments Finis : Théorie, Applications, Mise en Oeuvre, Vol. 36. Springer Science & Business Media (2002). [Google Scholar]
  14. R. Eymard, T. Gallouët and R. Herbin, Handbook of Numerical Analysis - Finite, Vol. 7. Elsevier (2000). [Google Scholar]
  15. B.A. Fryxell, P.R. Woodward, P. Colella and K.-H. Winkler, An implicit-explicit hybrid method for lagrangian hydrodynamics. J. Comput. Phys. 63 (1986) 283–310. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Gallout, L. Gastaldo, R. Herbin and J.-C. Latch, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. [CrossRef] [EDP Sciences] [Google Scholar]
  17. S.K. Godunov, Difference methods of solving equations of gas dynamics. Izd-vo Novosibirsk, un-ta (1962). [Google Scholar]
  18. J.-B. Hirriart-Urruty, Optimisation et Analyse Convexe. EDP Sciences (1998). [Google Scholar]
  19. J.-B. Hirriart-Urruty and C. Lemarchal, Convex Analysis and Minimization. Springer-Verlag (1996). [Google Scholar]
  20. J.-B. Hirriart-Urruty and C. Lemarchal, Fundamentals of Convex Analysis. Springer-Verlag (2004). [Google Scholar]
  21. R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1985) 40–65. [Google Scholar]
  22. G. Kluth and B. Després, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J. Comput. Phys. 229 (2010) 9092–9118. [CrossRef] [MathSciNet] [Google Scholar]
  23. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Vol. 31. Cambridge university press (2002). [CrossRef] [Google Scholar]
  24. P.-H. Maire, R. Abgrall, J. Breil, R. Loubère and B. Rebourcet, A nominally sceond-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. J. Comput. Phys. 235 (2013) 626–665. [CrossRef] [MathSciNet] [Google Scholar]
  25. F. Moukalled and M. Darwish, A high-resolution pressure-based algorithm for fluid flow at all speeds. J. Comput. Phys. 168 (2001) 101–130. [CrossRef] [MathSciNet] [Google Scholar]
  26. W.A. Mulder and B. Van Leer, Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys. 59 (1985) 232–246. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. Patnaik, R.H. Guirguis, J.P. Boris and E.S. Oran, A barely implicit correction for flux-corrected transport. J. Comput. Phys. 71 (1987) 1–20. [CrossRef] [Google Scholar]
  28. S. Peluchon, G. Gallice and L. Mieussens, A robust implicit-explicit acoustic-transport splitting scheme for two-phase flows. J. Comput. Phys. 339 (2017) 328–355. [CrossRef] [MathSciNet] [Google Scholar]
  29. E.S. Politis and K.C. Giannakoglou, A pressure-based algorithm for high speed turbomachinery flows. J. Numer. Methods Fluids 25 (1997) 63–80. [Google Scholar]
  30. P.-A. Raviart and E. Godlewski, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996). [Google Scholar]
  31. W.J. Rider, Revisiting wall heating. J. Comput. Phys. (2000). [Google Scholar]
  32. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21 (1999) 1115–1145. [Google Scholar]
  33. N. Seguin, F. Coquel and E. Godlewski, Approximation par relaxation de systèmes hyperboliques. Sminaire d’analyse applique, Universit Paris 13 (2008). [Google Scholar]
  34. D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press (1999). [Google Scholar]
  35. A. Thomann, G. Puppo and C. Klingenberg, An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys. 420 (2020) 109723. [Google Scholar]
  36. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag (1999). [Google Scholar]
  37. G. Toth, R. Keppens and M.A. Bochev, Implicit and semi-implicit schemes in the versatile advectio code: Numerical tests. Astron. Astrophys. 332 (1998) 1159–1170. [Google Scholar]
  38. P. Váchal and B. Wendroff, Volume change and energy exchange: How they affect symmatry in the noh problem. J. Comput. Phys. 364 (2018). [Google Scholar]
  39. D.R. Van der Heuk, C. Vuik and P. Wesseling, Stability analysis of segregated solution methods for compressible flows. Appl. Numer. Math. 38 (2001) 257–274. [CrossRef] [MathSciNet] [Google Scholar]
  40. D.R. Van der Heuk, C. Vuik and P. Wesseling, A conservative pressure-correction method for flow at all speed. Comput. Fluids 32 (2003) 1113–1132. [CrossRef] [MathSciNet] [Google Scholar]
  41. D. Vidovic, A. Segal and P. Wesseling, A superlinearly convergent Mach-uniform finite volume method for Euler equations on staggered unstructured grids. J. Comput. Phys. 217 (2006) 277–294. [CrossRef] [MathSciNet] [Google Scholar]
  42. P. Woodward and P. Colella, The numerical simulation of 2d fluid flow with strong shocks. J. Comput. Phys. (1983). [Google Scholar]
  43. A. Zakirov, B. Korneev, V. Levchenko and A. Perepelkina, On the conservativity of the particles-on-demand method for solution of the discrete boltzmann equation. Keldysh Institute Preprints (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you