Open Access
Volume 57, Number 2, March-April 2023
Page(s) 693 - 716
Published online 27 March 2023
  1. H. Sackmann, Plenary lecture. Smectic liquid crystals. A historical review. Liq. Cryst. 5 (1989) 43–55. [CrossRef] [Google Scholar]
  2. J.M. Ball, Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647 (2017) 1–27. [CrossRef] [Google Scholar]
  3. P.G. de Gennes, The Physics of Liquid Crystals. Oxford University Press, Oxford (1974). [Google Scholar]
  4. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. CPC Press (2004). [Google Scholar]
  5. P.G. de Gennes, An analogy between superconductors and smectic A. Solid State Commun. 10 (1972) 753–756. [CrossRef] [Google Scholar]
  6. M.Y. Pevnyi, J. Selinger and T.J. Sluckin, Modeling smectic layers in confined geometries: order parameter and defects. Phys. Rev. E 90 (2014) 1–8. [CrossRef] [Google Scholar]
  7. J.M. Ball and S.J. Bedford, Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612 (2015) 1–23. [CrossRef] [Google Scholar]
  8. J. Xia, S. MacLachlan, T.J. Atherton and P.E. Farrell, Structural landscapes in geometrically frustrated smectics. Phys. Rev. Lett. 126 (2021) 1–6. [CrossRef] [Google Scholar]
  9. C.J. Garca-Cervera and S. Joo, Layer undulations in Smectic A liquid crystals. J. Comp. Theor. Nano. 7 (2010) 795–801. [CrossRef] [Google Scholar]
  10. R. Wittmann, L.B.G. Cortes, H. Löwen and D.G.A.L. Aarts, Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement. Nat. Comm. 12 (2021) 1–10. [NASA ADS] [CrossRef] [Google Scholar]
  11. P. Monderkamp, R. Wittmann, L.B.G. Cortes, D.G.A.L. Aarts and H. Löwen, Topology of orientational defects in confined smectic liquid crystals. Phys. Rev. Lett. 127 (2021) 1–10. [CrossRef] [Google Scholar]
  12. S.C. Brenner, C0 interior penalty methods, in Frontiers in Numerical Analysis – Durham 2010. Lecture Notes in Computational Science and Engineering, edited by J. Blowey and M. Jensen. Vol. 85. Springer, Berlin, Heidelberg (2011). [Google Scholar]
  13. S.C. Brenner and L. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22 (2005) 83–118. [CrossRef] [Google Scholar]
  14. N.J. Mottram and C.J.P. Newton, Introduction to Q-tensor Theory. (2014). [Google Scholar]
  15. T.A. Davis and J.E.C. Gartland, Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35 (1998) 336–362. [CrossRef] [MathSciNet] [Google Scholar]
  16. S.J. Bedford, Calculus of variations and its application to liquid crystals. Ph.D. thesis, University of Oxford (2014). [Google Scholar]
  17. J.P. Borthagaray, R.H. Nochetto and S.W. Walker, A structure-preserving FEM for the uniaxially constrained Q-tensor model of nematic liquid crystals. Numer. Math. 145 (2020) 837–881. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Robinson, C. Luo, P.E. Farrell, R. Erban and A. Majumdar, From molecular to continuum modelling of bistable liquid crystal devices. Liq. Cryst. 44 (2017) 2267–2284. [CrossRef] [Google Scholar]
  19. J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. 72 (1968) 701–709. [CrossRef] [Google Scholar]
  20. S. Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59 (2009) 219–233. [CrossRef] [MathSciNet] [Google Scholar]
  21. X. Cheng, W. Han and H. Huang, Some mixed finite element methods for the biharmonic equation. J. Comp. Appl. Math. 126 (2000) 91–109. [CrossRef] [Google Scholar]
  22. R. Scholtz, A mixed method for fourth-order problems using linear finite elements. RAIRO Numer. Anal. 15 (1978) 85–90. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. [Google Scholar]
  24. R.R. Maity, A. Majumdar and N. Nataraj, Discontinuous Galerkin finite element methods for the Landau-de Gennes minimization problem of liquid crystals. IMA J. Numer. Anal. 41 (2021) 1130–1163. [CrossRef] [MathSciNet] [Google Scholar]
  25. H. Blum and R.R. Bonn, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Mech. Appl. Sci. 2 (1980) 556–581. [CrossRef] [Google Scholar]
  26. S.C. Brenner, K. Wang and J. Zhao, Poincaré-Friedrichs inequalities for piecewise H2 functions. Numer. Funct. Anal. Optim. 25 (2004) 463–478. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Kesavan, Topics in Functional Analysis and Applications. John Wiley & Sons, New York (1989). [Google Scholar]
  28. L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics , 2nd edition. American Mathematical Society, Providence, RI (2010). [CrossRef] [Google Scholar]
  29. S.C. Brenner and L. Sung, A weakly over-penalized symmetric interior penalty method. Electon. Trans. Numer. Anal. 30 (2008) 107–127. [Google Scholar]
  30. S.C. Brenner, T. Gudi and L. Sung, A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electon. Trans. Numer. Anal. 37 (2010) 214–238. [Google Scholar]
  31. T.A. Davis, Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals in confinement. Ph.D. thesis, Kent State University (1994). [Google Scholar]
  32. E. Süli and I. Mozolevski, hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196 (2007) 1851–1863. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you