Open Access
Volume 57, Number 2, March-April 2023
Page(s) 991 - 1027
Published online 07 April 2023
  1. R. Abgrall, A combination of residual distribution and the active flux formulations or a new class of schemes that can combine several writings of the same hyperbolic problem: application to the 1d Euler equations. Commun. Appl. Math. Comput. (2022) 1–33. DOI: 10.1007/s42967-021-00175-w. [Google Scholar]
  2. W. Barsukow, The active flux scheme for nonlinear problems. J. Sci. Comput. 86 (2021) 1–34. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Barsukow and J. Berberich, A well-balanced Active Flux scheme for the shallow water equations with wetting and drying. submitted to J. Sci. Comput (2020). [Google Scholar]
  4. W. Barsukow and C. Klingenberg, Exact solution and a truly multidimensional Godunov scheme for the acoustic equations. ESAIM M2AN 56 (2022). [Google Scholar]
  5. W. Barsukow, J. Hohm, C. Klingenberg and P.L. Roe, The active flux scheme on Cartesian grids and its low Mach number limit. J. Sci. Comput. 81 (2019) 594–622. [CrossRef] [MathSciNet] [Google Scholar]
  6. W. Barsukow, J.P. Berberich and C. Klingenberg, On the Active Flux scheme for hyperbolic PDEs with source terms. SIAM J. Sci. Comput. 43 (2021) A4015–A4042. [CrossRef] [Google Scholar]
  7. E. Chudzik, C. Helzel and D. Kerkmann, The cartesian grid active flux method: linear stability and bound preserving limiting. Appl. Math. Comput. 393 (2021) 125501. [CrossRef] [Google Scholar]
  8. A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Z. 14 (1922) 110–148. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput. 52 (1989) 411–435. [Google Scholar]
  10. B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Math. Modell. Numer. Anal.-Modél. Math. Anal. Numér. 25 (1991) 337–361. [CrossRef] [EDP Sciences] [Google Scholar]
  11. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [CrossRef] [MathSciNet] [Google Scholar]
  12. T.A. Eymann and P.L. Roe, Active flux schemes for systems, in 20th AIAA Computational Fluid Dynamics Conference (2011). [Google Scholar]
  13. T.A. Eymann and P.L. Roe, Multidimensional active flux schemes, in 21st AIAA Computational Fluid Dynamics Conference (2013). [Google Scholar]
  14. D. Fan, On the acoustic component of active flux schemes for nonlinear hyperbolic conservation laws. Ph.D. thesis, University of Michigan (2017). [Google Scholar]
  15. S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89 (1959) 271–306. [Google Scholar]
  16. H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. [Google Scholar]
  17. F. He, Towards a new-generation numerical scheme for the compressible Navier–Stokes equations with the active flux method. Ph.D. thesis University of Michigan Library (2021). [Google Scholar]
  18. C. Helzel, D. Kerkmann and L. Scandurra, A new ADER method inspired by the active flux method. J. Sci. Comput. 80 (2019) 1463–1497. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Iserles, Order stars and a saturation theorem for first-order hyperbolics. IMA J. Numer. Anal. 2 (1982) 49–61. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation. Publications mathématiques et informatique de Rennes S 4 (1974) 1–40. [Google Scholar]
  21. J.J.H. Miller, On the location of zeros of certain classes of polynomials with applications to numerical analysis. IMA J. Appl. Math. 8 (1971) 397–406. [CrossRef] [Google Scholar]
  22. P. Roe, Did numerical methods for hyperbolic problems take a wrong turning? in XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Springer (2016) 517–534. [Google Scholar]
  23. P. Roe, Is discontinuous reconstruction really a good idea? J. Sci. Comput. 73 (2017) 1094–1114. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Roe, Designing CFD methods for bandwidth – a physical approach. Comput. Fluids 214 (2021) 104774. [CrossRef] [Google Scholar]
  25. P.L. Roe, T. Lung and J. Maeng, New approaches to limiting, in 22nd AIAA Computational Fluid Dynamics Conference (2015) 2913. DOI: 10.2514/6.2015-2913. [Google Scholar]
  26. I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Journal für die reine und angewandte Mathematik 147 (1917) 205–232. [CrossRef] [Google Scholar]
  27. I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Part II. J. Reine Angew. Math. 148 (1918) 122–145. [CrossRef] [Google Scholar]
  28. G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1–31. [CrossRef] [MathSciNet] [Google Scholar]
  29. B. van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23 (1977) 276–299. [NASA ADS] [CrossRef] [Google Scholar]
  30. X.X. Zhang and C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229 (2010) 8918–8934. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you