Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 1029 - 1062
DOI https://doi.org/10.1051/m2an/2023014
Published online 07 April 2023
  1. R. Aboulaïch, A. Ben Abda and M. Khallel, Missing boundary data reconstruction via an approximate optimal control. Inverse Probl. Imaging 2 (2008) 411–426. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965). [Google Scholar]
  3. S. Andrieux, A. Ben Abda and T.N. Baranger, Data completion via an energy error functional. CR Mécanique 333 (2005) 171–177. [CrossRef] [Google Scholar]
  4. S. Andrieux, T.N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional. Inverse Probl. 22 (2006) 115–133. [CrossRef] [Google Scholar]
  5. M. Azaïez, F. Ben Belgacem, D.T. Du and F. Jelassi, A finite element model for the data completion problem: analysis and assessment. Inverse Probl. Sci. Eng. 19 (2011) 1063–1086. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Baravdish, I. Borachok, R. Chapko, B.T. Johansson and M. Slodička, An iterative method for the Cauchy problem for second-order elliptic equations. Int. J. Mech. Sci. 142–143 (2018) 216–223. [CrossRef] [Google Scholar]
  7. F. Ben Belgacem, D.T. Du and F. Jelassi, Local convergence of the Lavrentiev method for the Cauchy problem via a Carleman inequality. J. Scientific Comput. 53 (2012) 320–341. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Ben Belgacem, V. Girault and F. Jelassi, Analysis of Lavrentiev-finite element methods for data completion problems. Numer. Math. 139 (2018) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Ben Belgacem, V. Girault and F. Jelassi, Full discretization of Cauchy’s problem by Lavrentiev-finite element method. SIAM J. Numer. Anal. 60 (2022) 558–584. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Berggren, Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42 (2004) 860–877. [Google Scholar]
  11. M. Bucataru, I. Cîmpean and L. Marin, A gradient-based regularization algorithm for the Cauchy problem in steady-state anisotropic heat conduction. Comput. Math. with Appl. 119 (2022) 220–240. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Caubet and J. Dardé, A dual approach to Kohn-Vogelius regularization applied to data completion problem. Inverse Probl. 36 (2020) 065008. [CrossRef] [Google Scholar]
  13. A. Chakib and A. Nachaoui, Convergence analysis for finite element approximation to an inverse Cauchy problem. Inverse Probl. 22 (2006) 1191–1206. [CrossRef] [Google Scholar]
  14. J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Probl. Imaging 10 (2016) 379–407. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Essaouini, A. Nachaoui and S. El Hajji, Reconstruction of boundary data for a class of nonlinear inverse problems. J. Inverse Ill-Posed Probl. 12 (2004) 369–385. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Essaouini, A. Nachaoui and S. El Hajji, Numerical method for solving a class of nonlinear elliptic inverse problems. J. Comput. Appl. Math. 162 (2004) 165–181. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1983). [Google Scholar]
  18. M. Gockenbach, Understanding and Implementing the Finite Element Method. SIAM, Philadelphia (2006). [CrossRef] [Google Scholar]
  19. Y. Gu, W. Chen and Z.-J. Fu, Singular boundary method for inverse heat conduction problems in general anisotropic media. Inverse Probl. Sci. Eng. 22 (2014) 889–909. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y. Gu, W. Chen, C. Zhang and X. He, A meshless singular boundary method for three-dimensional inverse heat conduction problems in general anisotropic media. Int. J. Heat Mass Trans. 84 (2015) 91–102. [CrossRef] [Google Scholar]
  21. A. Habbal and M. Khallel, Data completion problems solved as Nash games. J. Phys. Conf. Ser. 386 (2012) 012004. [CrossRef] [Google Scholar]
  22. A. Habbal and M. Khallel, Neumann-Dirichlet Nash strategies for the solution of elliptic Cauhcy problems. SIAM J. Control Optim. 51 (2013) 4066–4083. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Hadamard, Lectures on Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923). [Google Scholar]
  24. M. Hanke and P.C. Hansen, Regularization methods for large-scale problems. Surv. Math. Industry 3 (1993) 253–315. [Google Scholar]
  25. P.C. Hansen, The L-curve and its use in the numerical treatment of inverse problems. Comput. Inverse Probl. Electrocardiol. 4 (2001) 119–142. [Google Scholar]
  26. D.N. Hào, B.T. Johansson, D. Lesnic and P.M. Hien, A variational method and approximations of a Cauchy problem for elliptic equations. J. Algorithm Comput. Technol. 4 (2010) 89–119. [CrossRef] [Google Scholar]
  27. L. Hörmander, The Analysis of Partial Differential Operators I. Springer-Verlag, Berlin (2003). [CrossRef] [Google Scholar]
  28. B. Jin, Y. Zheng and L. Marin, The method of fundamental solutions for inverse boundary value problems associated with the steady-state heat conduction in anisotropic media. Int. J. Numer. Methods Eng. 65 (2006) 1865–1891. [CrossRef] [Google Scholar]
  29. T. Johansson, An iterative procedure for solving a Cauchy problem for second order elliptic equations. Math. Nachr. 272 (2004) 46–54. [CrossRef] [MathSciNet] [Google Scholar]
  30. V.A. Kozlov, V.G. Mazya and A.V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 31 (1991) 64–74. English translation: U.S.S.R. Comput. Math. Math. Phys. 31 (1991) 45–52. [Google Scholar]
  31. C. Ma, Z. Ma, L. Gao, Y. Liu, T. Wu, L. Wang, C. Wei and F. Wan, Preparation and characterization of coatings with anisotropic thermal conductivity. Mater. Des. 160 (2018) 1273–1280. [CrossRef] [Google Scholar]
  32. L. Marin, An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional anisotropic heat conduction. CMC: Comput. Mater. Contin. 12 (2009) 71–100. [Google Scholar]
  33. L. Marin, Stable boundary and internal data reconstruction in two-dimensional anisotropic heat conduction Cauchy problems using relaxation procedures for an iterative MFS algorithm. CMC: Comput. Mater. Contin. 17 (2010) 233–274. [Google Scholar]
  34. L. Marin, Landweber-Fridman algorithms for the Cauchy problem in steady-state anisotropic heat conduction. Math. Mech. Solids 25 (2020) 1340–1363. [CrossRef] [MathSciNet] [Google Scholar]
  35. L. Marin, An iterative algorithm for the Cauchy problems associated with the steady-state anisotropic heat conduction, in Current Trends in Applied Mathematics, Iaşi, Romania, 21–22 September, 2020. [Google Scholar]
  36. J. Marschall, The trace of Sobolev-Slobodeckij spaces on Lipschitz domains. Manuscripta Math. 58 (1987) 47–65. [CrossRef] [MathSciNet] [Google Scholar]
  37. N.S. Mera, L. Elliott, D.B. Ingham and D. Lesnic, The boundary element solution for the Cauchy steady heat conduction problem in an anisotropic medium. Int. J. Numer. Methods Eng. 49 (2000) 481–499. [CrossRef] [Google Scholar]
  38. N.S. Mera, L. Elliott, D.B. Ingham and D. Lesnic, An iterative algorithm for singular Cauchy problems for the steady state anisotropic heat conduction equation. Eng. Anal. Bound. Elem. 26 (2002) 157–168. [CrossRef] [Google Scholar]
  39. V.A. Morozov, On the solution of functional equations by the method of regularization. Doklady Math. 167 (1966) 510–512. [Google Scholar]
  40. M.N. Özişik, Heat Conduction. John Wiley & Sons, New York (1993). [Google Scholar]
  41. R. Rischette, T.N. Baranger and N. Debit, Numerical analysis of an energy-like minimization method to solve the Cauchy problem with noisy data. J. Comput. Appl. Math. 235 (2011) 3257–3269. [CrossRef] [MathSciNet] [Google Scholar]
  42. R. Rischette, T.N. Baranger and S. Andrieux, Regularization of the noisy Cauchy problem solution approximated by an energy-like method. Int. J. Numer. Methods Eng. 95 (2013) 271–287. [CrossRef] [Google Scholar]
  43. F. Riesz and B.S. Nagy, Functional Analysis. Dover Publications Inc. (Verlag), New York (1990). [Google Scholar]
  44. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer-Verlag, New York (2008). [CrossRef] [Google Scholar]
  45. S. Trevisan, W. Wang and B. Laumert, Coatings utilization to modify the effective properties of high temperature packed bed thermal energy storage. Appl. Therm. Eng. 185 (2021) 116414. [CrossRef] [Google Scholar]
  46. A.-P. Voinea-Marinescu, L. Marin and F. Delvare, BEM-fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction. Numer. Algorithms 88 (2021) 1667–1702. [CrossRef] [MathSciNet] [Google Scholar]
  47. A.-P. Voinea-Marinescu and L. Marin, Fading regularization MFS algorithm for the Cauchy problem in anisotropic heat conduction. Comput. Mech. 68 (2021) 921–941. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you