Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 645 - 670
DOI https://doi.org/10.1051/m2an/2022094
Published online 27 March 2023
  1. R.A. Adams and J.J. Elsevier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
  2. V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147 (1992) 527–548. [CrossRef] [Google Scholar]
  3. V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory, in The Stability of Matter: From Atoms to Stars. Springer (1997) 309–311. [CrossRef] [Google Scholar]
  4. R.J. Bartlett and M. Musiał, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 (2007) 291. [CrossRef] [Google Scholar]
  5. R. Bishop, An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 80 (1991) 95–148. [CrossRef] [Google Scholar]
  6. C. Bloch, Sur la théorie des perturbations des états liés. Nucl. Phys. 6 (1958) 329–347. [CrossRef] [Google Scholar]
  7. E. Cances and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: Math. Model. Numer. Anal. 34 (2000) 749–774. [CrossRef] [EDP Sciences] [Google Scholar]
  8. E. Cances, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer. Handb. Numer. Anal. 10 (2003) 3–270. [Google Scholar]
  9. G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes. Elsevier (1997). [Google Scholar]
  10. H. Eschrig, The Fundamentals of Density Functional Theory. Vol. 32, Springer (1996). [CrossRef] [Google Scholar]
  11. F.M. Faulstich, A. Laestadius, O. Legeza, R. Schneider and S. Kvaal, Analysis of the tailored coupled-cluster method in quantum chemistry. SIAM J. Numer. Anal. 57 (2019) 2579–2607. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 (2003) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  13. S.J. Gustafson and I.M. Sigal, Mathematical Concepts of Quantum Mechanics. Springer Science & Business Media (2011). [Google Scholar]
  14. T. Helgaker, P. Jorgensen and J. Olsen, Molecular electronic-structure theory. John Wiley & Sons (2014). [Google Scholar]
  15. P.D. Hislop and I.M. Sigal, Introduction to Spectral Theory: With Applications to Schrödinger Operators. Vol. 113, Springer Science & Business Media (2012). [Google Scholar]
  16. B. Jeziorski and H.J. Monkhorst, Coupled-cluster method for multideterminantal reference states. Phys. Rev. A 24 (1981) 1668. [CrossRef] [Google Scholar]
  17. K. Kowalski, Properties of coupled-cluster equations originating in excitation sub-algebras. J. Chem. Phys. 148 (2018) 094104. [CrossRef] [Google Scholar]
  18. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Many-fermion theory in exps-(or coupled cluster) form. Phys. Rep. 36 (1978) 1–63. [CrossRef] [Google Scholar]
  19. M. Lewin, Existence of Hartree-Fock excited states for atoms and molecules. Lett. Math. Phys. 108 (2018) 985–1006. [MathSciNet] [Google Scholar]
  20. M. Lewin, Semi-classical limit of the Levy-Lieb functional in density functional theory. Comp. Rend. Math. 356 (2018) 449–455. [CrossRef] [Google Scholar]
  21. M. Lewin, E.H. Lieb and R. Seiringer, The local density approximation in density functional theory. Pure Appl. Anal. 2 (2020) 35–73. [CrossRef] [MathSciNet] [Google Scholar]
  22. E.H. Lieb, Density functionals for Coulomb systems. Int. J. Quantum Chem. 24 (1983) 243–277. [CrossRef] [Google Scholar]
  23. E.H. Lieb and B. Simon, On solutions to the Hartree-Fock problem for atoms and molecules. J. Chem. Phys. 61 (1974) 735–736. [CrossRef] [MathSciNet] [Google Scholar]
  24. E.H. Lieb and M. Loss, Analysis. In In Amer. Math Soc. (2001). [Google Scholar]
  25. E.H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010). [Google Scholar]
  26. P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33–97. [CrossRef] [Google Scholar]
  27. J. Paldus, Coupled cluster theory, edited by S. Wilson and G.H. Diercksen, In Vol. 293 of Methods in Computational Molecular Physics. Springer Science & Business Media (1991) 99–184. [CrossRef] [Google Scholar]
  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis. Vol. 1, Elsevier (1972). [Google Scholar]
  29. M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Vol. 2, Elsevier (1975). [Google Scholar]
  30. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators. Vol. 4, Elsevier (1978). [Google Scholar]
  31. T. Rohwedder, The continuous Coupled Cluster formulation for the electronic Schrödinger equation. ESAIM: Math. Model. Numer. Anal.-Modél. Math. Anal. Numér. 47 (2013) 421–447. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  32. T. Rohwedder and R. Schneider, Error estimates for the coupled cluster method. ESAIM: Math. Model. Numer. Anal.-Modél. Math. Anal. Numér. 47 (2013) 1553–1582. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  33. R. Schneider, Analysis of the projected coupled cluster method in electronic structure calculation. Numer. Math. 113 (2009) 433–471. [CrossRef] [MathSciNet] [Google Scholar]
  34. A. Schrijver, Theory of Linear and Integer Programming. John Wiley & Sons (1998). [Google Scholar]
  35. I. Shavitt and R.J. Bartlett, Many-body Methods in Chemistry and Physics: MBPT and Coupled-cluster Theory. Cambridge University Press (2009). [CrossRef] [Google Scholar]
  36. J.P. Solovej, The ionization conjecture in Hartree-Fock theory. Ann. Math. (2003) 509–576. [Google Scholar]
  37. J.P. Solovej, Many body quantum mechanics. Lect. Notes (2007). [Google Scholar]
  38. H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Springer (2010). [CrossRef] [Google Scholar]
  39. E. Zeidler, Nonlinear Functional Analysis and Its Applications: Part 2A. Linear Monotone Operators. Springer-Verlag (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you