Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 671 - 691
DOI https://doi.org/10.1051/m2an/2022100
Published online 27 March 2023
  1. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000). [CrossRef] [Google Scholar]
  2. I. Babuška and W.C. Rheinboldt, A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal. 18 (1981) 565–589. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Brunner, On the numerical solution of nonlinear Volterra integro-differential equations. BIT Numer. Math. 13 (1973) 381–390. [CrossRef] [Google Scholar]
  4. H. Brunner, Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 42 (1984) 95–109. [CrossRef] [Google Scholar]
  5. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004). [Google Scholar]
  6. H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986). [Google Scholar]
  7. H. Brunner and D. Schötzau, hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44 (2006) 22–245. [Google Scholar]
  8. H. Brunner, A. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39 (2001) 957–982. [CrossRef] [MathSciNet] [Google Scholar]
  9. T.A. Burton, Volterra Integral and Differential Equations, 2nd edition. Vol. 202, Mathematics in Science and Engineering, Elsevier B.V. Amsterdam (2005). [Google Scholar]
  10. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Scientific Computation. Springer, Berlin, Heidelberg (2006). [CrossRef] [Google Scholar]
  11. W.X. Cao, Z.M. Zhang and Q.S. Zou, Is 2k-conjecture valid for finite volume methods? SIAM J. Numer. Anal. 53 (2015) 942–962. [CrossRef] [MathSciNet] [Google Scholar]
  12. W.X. Cao, H.L. Liu and Z.M. Zhang, Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33 (2017) 290–317. [CrossRef] [Google Scholar]
  13. W.X. Cao, L.L. Jia and Z.M. Zhang, A C1 Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete Contin. Dyn. Syst. Ser. B 26 (2021) 81–105. [MathSciNet] [Google Scholar]
  14. Q. Hu, Stieltjes derivatives and β-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal. 33 (1996) 208–220. [CrossRef] [MathSciNet] [Google Scholar]
  15. Q.M. Huang and H.H. Xie, Superconvergence of Galerkin solutions for Hammerstein equations. Int. J. Numer. Anal. Model. 6 (2009) 696–710. [MathSciNet] [Google Scholar]
  16. H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal. 33 (1996) 1048–1064. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Lin, Y.P. Lin, M. Rao and S.H. Zhang, Petrov-Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38 (2000) 937–963. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Lin, Y.P. Lin, P. Luo, M. Rao and S.H. Zhang, Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B 8 (2001) 405–426. [Google Scholar]
  19. P. Linz, Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia, PA (1985). [CrossRef] [Google Scholar]
  20. Ch Lubich, Runge-Kutta theory for Volterra integro-differential equations. Numer. Math. 40 (1982) 119–135. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Mustapha, A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comput. 82 (2013) 1987–2005. [CrossRef] [Google Scholar]
  22. K. Mustapha and J.K. Ryan, Post-processing discontinuous Galerkin solutions to Volterra integro-differential equations: analysis and simulations. J. Comput. Appl. Math. 253 (2013) 89–103. [CrossRef] [MathSciNet] [Google Scholar]
  23. I.P. Natanson, Theory of Functions of a Real Variable, Translated from the Russian by Leo F. Boron with the collaboration of Edwin Hewitt. Frederick Ungar Publishing Co., New York (1955). [Google Scholar]
  24. T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13 (1993) 93–99. [CrossRef] [MathSciNet] [Google Scholar]
  25. Z.Q. Wang, Y.L. Guo and L.J. Yi, An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels. Math. Comput. 86 (2017) 2285–2324. [CrossRef] [Google Scholar]
  26. A.M. Wazwaz, Linear and Nonlinear Integral Equations, Methods and Applications. Higher Education Press, Beijing, Springer, Heidelberg (2011). [CrossRef] [Google Scholar]
  27. J. Wen, C.M. Huang and M. Li, Stability analysis of Runge-Kutta methods for Volterra integro-differential equations. Appl. Numer. Math. 146 (2019) 73–88. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y.X. Wei and Y.P. Chen, Convergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equations. Numer. Math. Theory Methods Appl. 4 (2011) 419–438. [CrossRef] [MathSciNet] [Google Scholar]
  29. L.J. Yi, An h-p version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations. J. Sci. Comput. 65 (2015) 715–734. [CrossRef] [MathSciNet] [Google Scholar]
  30. L.J. Yi and B.Q. Guo, An h-p Petrov-Galerkin finite element method for linear Volterra integro-differential equations. Sci. China Math. 57 (2014) 2285–2300. [CrossRef] [MathSciNet] [Google Scholar]
  31. L.J. Yi and B.Q. Guo, An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J. Numer. Anal. 53 (2015) 2677–2704. [CrossRef] [MathSciNet] [Google Scholar]
  32. W. Yuan and T. Tang, The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation. Math. Comput. 54 (1990) 155–168. [CrossRef] [Google Scholar]
  33. S.H. Zhang, T. Lin, Y.P. Lin and M. Rao, Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Appl. Math. 45 (2000) 241–263. [CrossRef] [MathSciNet] [Google Scholar]
  34. S.H. Zhang, T. Lin, Y.P. Lin and M. Rao, Extrapolation and a-posteriori error estimators of Petrov-Galerkin methods for non-linear Volterra integro-differential equations. J. Comput. Math. 19 (2001) 407–422. [MathSciNet] [Google Scholar]
  35. M.Z. Zhang, X.Y. Mao and L.J. Yi, Exponential convergence of the hp-version of the composite Gauss-Legendre quadrature for integrals with endpoint singularities. Appl. Numer. Math. 170 (2021) 340–352. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you