Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 545 - 583
DOI https://doi.org/10.1051/m2an/2022099
Published online 27 March 2023
  1. J.S. Arponen, Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems. Ann. Phys. 151 (1983) 311–382. [CrossRef] [Google Scholar]
  2. V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory, in The Stability of Matter: From Atoms to Stars. Springer (1997) 309–311. [CrossRef] [Google Scholar]
  3. R.J. Bartlett, S.A. Kucharski and J. Noga, Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett. 155 (1989) 133–140. [CrossRef] [Google Scholar]
  4. N. Benedikter, Hartree-Fock theory. Online lecture notes (2017). [Google Scholar]
  5. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in lipschitz domains. Numer. Math. 95 (2003) 459–485. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Cances, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer. Handb. Numer. Anal. 10 (2003) 3–270. [Google Scholar]
  8. J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis. Vol. 11. American Mathematical Society (1995). [CrossRef] [Google Scholar]
  9. G. Dinca and J. Mawhin, Brouwer degree and applications. Preprint (2009). [Google Scholar]
  10. G. Dinca and J. Mawhin, Brouwer Degree (The Core of Nonlinear Analysis). Birkhäuser Basel (2021). [CrossRef] [Google Scholar]
  11. P. Drábek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations. Springer Science & Business Media (2007). [Google Scholar]
  12. F.M. Faulstich, A. Laestadius, O. Legeza, R. Schneider and S. Kvaal, Analysis of the tailored coupled-cluster method in quantum chemistry. SIAM J. Numer. Anal. 57 (2019) 2579–2607. [CrossRef] [MathSciNet] [Google Scholar]
  13. F.M. Faulstich, M. Máté, A. Laestadius, M.A. Csirik, L. Veis, A. Antalik, J. Brabec, R. Schneider, J. Pittner, S. Kvaal and O. Legeza, Numerical and theoretical aspects of the DMRG-TCC method exemplified by the nitrogen dimer. J. Chem. Theory Comput. 15 (2019) 2206–2220. [CrossRef] [PubMed] [Google Scholar]
  14. G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 (2003) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Geertsen, M. Rittby and R.J. Bartlett, The equation-of-motion coupled-cluster method: excitation energies of Be and CO. Chem. Phys. Lett. 164 (1989) 57–62. [CrossRef] [Google Scholar]
  16. T. Helgaker, P. Jorgensen and J. Olsen, Molecular Electronic-Structure Theory. John Wiley & Sons (2014). [Google Scholar]
  17. K. Jankowski and K. Kowalski, Physical and mathematical content of coupled-cluster equations. II. On the origin of irregular solutions and their elimination via symmetry adaptation. J. Chem. Phys. 110 (1999) 9345–9352. [CrossRef] [Google Scholar]
  18. K. Jankowski and K. Kowalski, Physical and mathematical content of coupled-cluster equations. IV. Impact of approximations to the cluster operator on the structure of solutions. J. Chem. Phys. 111 (1999) 2952–2959. [CrossRef] [Google Scholar]
  19. K. Jankowski, K. Kowalski and P. Jankowski, Multiple solutions of the single-reference coupled-cluster equations. I. H4 model revisited. Int. J. Quantum Chem. 50 (1994) 353–367. [CrossRef] [Google Scholar]
  20. K. Jankowski, K. Kowalski, I. Grabowski and H. Monkhorst, Correspondence between physical states and solutions to the coupled-cluster equations. Int. J. Quantum Chem. 75 (1999) 483–496. [CrossRef] [Google Scholar]
  21. F. Kossoski, A. Marie, A. Scemama, M. Caffarel and P.-F. Loos, Excited states from state specific orbital optimized pair coupled cluster. J. Chem. Theory Comput. 17 (2021) 4756–4768. [CrossRef] [PubMed] [Google Scholar]
  22. K. Kowalski and K. Jankowski, Full solution to the coupled-cluster equations: the H4 model. Chem. Phys. Lett. 290 (1998) 180–188. [CrossRef] [Google Scholar]
  23. A. Laestadius and F.M. Faulstich, The coupled-cluster formalism – a mathematical perspective. Mol. Phys. 117 (2019) 2362–2373. [CrossRef] [Google Scholar]
  24. A. Laestadius and S. Kvaal, Analysis of the extended coupled-cluster method in quantum chemistry. SIAM J. Numer. Anal. 56 (2018) 660–683. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Lewin, Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260 (2011) 3535–3595. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Lewin, Existence of Hartree-Fock excited states for atoms and molecules. Lett. Math. Phys. 108 (2018) 985–1006. [MathSciNet] [Google Scholar]
  27. E.H. Lieb and B. Simon, On solutions to the Hartree-Fock problem for atoms and molecules. Journal Chem. Phys. 61 (1974) 735–736. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33–97. [CrossRef] [Google Scholar]
  29. D. O’Regan, Y.J. Cho and Y.-Q. Chen, Topological Degree Theory and Applications. CRC Press (2006). [Google Scholar]
  30. J. Paldus, M. Takahashi and B. Cho, Degeneracy and coupled-cluster approaches. Int. J. Quantum Chem. 26 (1984) 237–244. [CrossRef] [Google Scholar]
  31. W.V. Petryshyn, Approximation-Solvability of Nonlinear Functional and Differential Equations. Vol. 171. CRC Press (1992). [Google Scholar]
  32. P. Piecuch and K. Kowalski, In search of the relationship between multiple solutions characterizing coupled-cluster theories, in Computational Chemistry: Reviews of Current Trends. World Scientific (2000) 1–104. [Google Scholar]
  33. P. Piecuch, S. Zarrabian, J. Paldus and J. Čžek, Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems. Phys. Rev. B 42 (1990) 3351. [CrossRef] [PubMed] [Google Scholar]
  34. V.V. Prasolov, Problems and Theorems in Linear Algebra. Vol. 134. American Mathematical Society (1994). [Google Scholar]
  35. T. Rohwedder, The continuous Coupled Cluster formulation for the electronic Schrödinger equation. ESAIM: Math. Modell. Numer. Anal.-Modél. Math. Anal. Numér. 47 (2013) 421–447. [CrossRef] [EDP Sciences] [Google Scholar]
  36. T. Rohwedder and R. Schneider, Error estimates for the coupled cluster method. ESAIM: Math. Modell. Numer. Anal.-Modél. Math. Anal. Numér. 47 (2013) 1553–1582. [CrossRef] [EDP Sciences] [Google Scholar]
  37. R. Schneider, Analysis of the projected coupled cluster method in electronic structure calculation. Numer. Math. 113 (2009) 433–471. [CrossRef] [MathSciNet] [Google Scholar]
  38. I.V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Vol. 139. American Mathematical Society (1994). [CrossRef] [Google Scholar]
  39. J.P. Solovej, Many body quantum mechanics. Lecture Notes (2007). [Google Scholar]
  40. L.T. Watson, S.C. Billups and A.P. Morgan, Algorithm 652: Hompack: a suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. (TOMS) 13 (1987) 281–310. [CrossRef] [Google Scholar]
  41. H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Springer (2010). [CrossRef] [Google Scholar]
  42. P. Zabrejko, Rotation of vector fields: definition, basic properties, and calculation, in Topological Nonlinear Analysis II. Springer (1997) 445–601. [CrossRef] [Google Scholar]
  43. E. Zeidler and P.R. Wadsack, Nonlinear Functional Analysis and its Applications: Fixed-Point Theorems/Transl. by Peter R. Wadsack. Springer-Verlag (1993). [Google Scholar]
  44. T.P. Živković, Existence and reality of solutions of the coupled-cluster equations. Int. J. Quantum Chem. 12 (1977) 413–420. [Google Scholar]
  45. T.P. Živković and H.J. Monkhorst, Analytic connection between configuration–interaction and coupled-cluster solutions. J. Math. Phys. 19 (1978) 1007–1022. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you