Open Access
Issue
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
Page(s) 367 - 394
DOI https://doi.org/10.1051/m2an/2023003
Published online 03 March 2023
  1. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [Google Scholar]
  2. C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175 (1999) 311–341. [CrossRef] [Google Scholar]
  3. W. Cao and Q. Zou, Analysis of spectral volume methods for 1D linear scalar hyperbolic equations. J. Sci. Comput. 90 (2022) 1–29. [CrossRef] [Google Scholar]
  4. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, II: general framework. Math. Comp. 52 (1989) 411–435. [MathSciNet] [Google Scholar]
  6. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws, V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [Google Scholar]
  8. B. Cockburn, G. Karniadakis and C.-W. Shu, The Development of Discontinuous Galerkin Methods. Springer Berlin Heidelberg (2000). [CrossRef] [Google Scholar]
  9. B. Cockburn, G. Kanschat and D. Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74 (2005) 1067–1095. [Google Scholar]
  10. S.K. Godunov, A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47 (1959) 271. [MathSciNet] [Google Scholar]
  11. P. Houston, C. Schwab and E. Suli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Kannan, A high order spectral volume formulation for solving equations containing higher spatial derivative terms: formulation and analysis for third derivative spatial terms using the LDG discretization procedure. Commun. Comput. Phys. 10 (2011) 1257–1279. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Kannan and Z.J. Wang, A study of viscous flux formulations for a p-multigrid spectral volume Navier-Stokes solver. J. Sci. Comput. 41 (2009) 165–199. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Kannan, Z.J. Wang, The direct discontinuous Galerkin (DDG) viscous flux scheme for the high order spectral volume method. Comput. Fluids 39 (2010) 2007–2021. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Kannan and Z.J. Wang, LDG2: a variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput. 46 (2011) 314–328. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Liu and J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47 (2009) 675–698. [CrossRef] [Google Scholar]
  17. Y. Liu, M. Vinokur and Z. Wang, Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys. 212 (2006) 454–472. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.T. Oden, I. Babuška and C.E. Baumann, A discontinuous hp finite element method for convection-diffusion problems. J. Comput. Phys. 146 (1998) 491–519. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Peraire and P.-O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30 (2008) 1806–1824. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Raghavendra, A high order spectral volume method for equations containing third spatial derivatives using an Interior Penalty formulation. CFD Lett. 3 (2011) 74–88. [Google Scholar]
  21. Y. Sun and Z. Wang, Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws unconstructured grids. Int. J. Numer. Meth. Fluids 45 (2004) 819–838. [CrossRef] [Google Scholar]
  22. Y. Sun, Z. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. VI. Extension to viscous flow. J. Comput. Phys. 215 (2006) 41–58. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y. Sun, Z. Wang and Y. Liu, High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2 (2007) 310–333. [MathSciNet] [Google Scholar]
  24. K. Van den Abeele and C. Lacor, An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys. 226 (2007) 1007–1026. [CrossRef] [MathSciNet] [Google Scholar]
  25. K. Van den Abeele, C. Lacor and Z. Wang, On the connection btetween the spectral volume method and the spectral difference method. IV. Extension to two-dimensional systems. J. Comput. Phys. 227 (2007) 877–885. [CrossRef] [MathSciNet] [Google Scholar]
  26. K. Van den Abeele, T. Broeckhoven and C. Lacor, Dispersion and dissipation properties of the 1D spectral volume method and application to a p-multigrid algorithm. J. Comput. Phys. 224 (2007) 616–636. [CrossRef] [MathSciNet] [Google Scholar]
  27. K. Van den Abeele, G. Ghorbaniasl, M. Parsani and C. Lacor, A stability analysis for the spectral volume method on tetrahedral grids. J. Comput. Phys. 228 (2009) 257–265. [CrossRef] [Google Scholar]
  28. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]
  29. Z. Wang, Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178 (2002) 210–251. [CrossRef] [MathSciNet] [Google Scholar]
  30. Z. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. II. Extension to two-dimensional scalar equation. J. Comput. Phys. 179 (2002) 665–697. [CrossRef] [MathSciNet] [Google Scholar]
  31. Z. Wang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. III. One dimensional systems and partition optimization. J. Sci. Comput. 20 (2004) 137–157. [CrossRef] [MathSciNet] [Google Scholar]
  32. Z. Wang, L. Zhang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. IV. Extension to two-dimensional systems. J. Comput. Phys. 194 (2004) 716–741. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Yan, A new nonsymmetric discontinuous Galerkin method for time dependent convection diffusion equations. J. Sci. Comput. 54 (2013) 663–683. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Zhang and C.-W. Shu, An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34 (2005) 581–592. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you