Open Access
Issue
ESAIM: M2AN
Volume 57, Number 3, May-June 2023
Page(s) 1355 - 1380
DOI https://doi.org/10.1051/m2an/2023022
Published online 12 May 2023
  1. S. Frei and T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52 (2014) 2315–2334. [MathSciNet] [Google Scholar]
  2. T. Richter, Fluid Structure Interactions: Models, Analysis and Finite Elements. Springer, New York (2017). [CrossRef] [Google Scholar]
  3. S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions. Ph.D. thesis, Heidelberg University, http://www.ub.uni-heidelberg.de/archiv/21590 (2016). [Google Scholar]
  4. Y. Bazilevs, K. Takizawa and T.E. Tezduyar, Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons (2013). [CrossRef] [Google Scholar]
  5. S. Gross and A. Reusken, Numerical Methods for Two-phase Incompressible Flows. Vol. 40. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  6. K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard and M. Accorsi, Parachute fluid–structure interactions: 3-d computation. Comput. Methods Appl. Mech. Eng. 190 (2000) 373–386. [CrossRef] [Google Scholar]
  7. C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (1972) 252–271. [Google Scholar]
  8. F. Van de Vosse, J. De Hart, C. Van Oijen, D. Bessems, T. Gunther, A. Segal, B. Wolters, J. Stijnen and F. Baaijens, Finite-element-based computational methods for cardiovascular fluid-structure interaction. J. Eng. Math. 47 (2003) 335–368. [CrossRef] [Google Scholar]
  9. L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Vol. 1. Springer Science & Business Media (2010). [Google Scholar]
  10. W.A. Wall and T. Rabczuk, Fluid-structure interaction in lower airways of CT-based lung geometries. Int. J. Numer. Methods Fluids 57 (2008) 653–675. [CrossRef] [Google Scholar]
  11. S. Knauf, S. Frei, T. Richter and R. Rannacher, Towards a complete numerical description of lubricant film dynamics in ball bearings. Comput. Mech. 53 (2014) 239–255. [Google Scholar]
  12. S.-R. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan and L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60 (2009) 1259–1288. [CrossRef] [Google Scholar]
  13. S. Claus and P. Kerfriden, A CutFEM method for two-phase flow problems. Comput. Methods Appl. Mech. Eng. 348 (2019) 185–206. [CrossRef] [Google Scholar]
  14. H. Garcke, K.F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Gangl, A local mesh modification strategy for interface problems with application to shape and topology optimization, in Scientific Computing in Electrical Engineering. Springer, Cham (2018) 147–155. [CrossRef] [Google Scholar]
  16. E. Burman, C. He and M.G. Larson, Comparison of shape derivatives using CutFEM for ill-posed Bernoulli free boundary problem. J. Sci. Comput. 88 (2021) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing 5 (1970) 207–213. [CrossRef] [Google Scholar]
  18. S. Frei and T. Richter, A second order time-stepping scheme for parabolic interface problems with moving interfaces. ESAIM: Math. Modell. Numer. Anal. 51 (2017) 1539–1560. [CrossRef] [EDP Sciences] [Google Scholar]
  19. S. Frei, T. Richter and T. Wick, Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates. J. Comput. Phys. 321 (2016) 874–891. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Frei, T. Richter and T. Wick, Eulerian techniques for fluid-structure interactions: Part I-Modeling and simulation, in Numerical Mathematics and Advanced Applications-ENUMATH 2013. Springer (2015) 745–753. [CrossRef] [Google Scholar]
  21. S. Frei, T. Richter and T. Wick, Eulerian techniques for fluid-structure interactions: Part II–Applications, in Numerical Mathematics and Advanced Applications-ENUMATH 2013. Springer (2015) 755–762. [CrossRef] [Google Scholar]
  22. U. Langer and H. Yang, Numerical simulation of parabolic moving and growing interface problems using small mesh deformation, in Johann Radon Institute for Computational and Applied Mathematics. Bericht-Nr. (2015–2016). [Google Scholar]
  23. E. Burman, M.A. Fernández and S. Frei, A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM: Math. Modell. Numer. Anal. 54 (2020) 531–564. [CrossRef] [EDP Sciences] [Google Scholar]
  24. E. Burman, M.A. Fernández, S. Frei and F.M. Gerosa, A mechanically consistent model for fluid–structure interactions with contact including seepage. Comput. Methods Appl. Mech. Eng. 392 (2022) 114637. [CrossRef] [Google Scholar]
  25. S. Frei and T. Richter, An accurate Eulerian approach for fluid-structure interactions, in Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers. Radon Series on Computational and Applied Mathematics, edited by S. Frei, B. Holm, T. Richter, T. Wick and H. Yang. Walter de Gruyter, Berlin (2017) 69–126. [CrossRef] [Google Scholar]
  26. J. Hoffman, B. Holm and T. Richter, The locally adapted parametric finite element method for interface problems on triangular meshes in Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers. Radon Series on Computational and Applied Mathematics, edited by S. Frei, B. Holm, T. Richter, T. Wick and H. Yang. de Gruyter (2017) 41–68. [CrossRef] [Google Scholar]
  27. S. Frei, An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes. Int. J. Numer. Methods Fluids 89 (2019) 407–429. [Google Scholar]
  28. S. Frei, T. Richter and T. Wick, LocModFE: locally modified finite elements for approximating interface problems in deal. II. Softw. Impacts 8 (2021) 100070. [Google Scholar]
  29. S. Frei, T. Richter and T. Wick, An implementation of a locally modified finite element method for interface problems in deal. II. Zenodo (2018). DOI: 10.5281/zenodo.1457758. [Google Scholar]
  30. U. Langer and H. Yang, Numerical simulation of parabolic moving and growing interface problems using small mesh deformation. (2015). Preprint: arXiv:1507.08784 [math.NA]. [Google Scholar]
  31. S. Höllbacher and G. Wittum, A sharp interface method using enriched finite elements for elliptic interface problems. Numer. Math. 147 (2021) 759–781. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Vogel, S. Reiter, M. Rupp, A. Nägel and G. Wittum, UG 4: A novel flexible software system for simulating PDE based models on high performance computers. Comput. Visual. Sci. 16 (2013) 165–179. [CrossRef] [Google Scholar]
  33. N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. [Google Scholar]
  34. C. Daux, N. Moës, J. Dolbow, N. Sukumar and T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng. 48 (2000) 1741–1760. [CrossRef] [Google Scholar]
  35. J. Chessa and T. Belytschko, An extended finite element method for two-phase fluids. J. Appl. Mech. 70 (2003) 10–17. [CrossRef] [MathSciNet] [Google Scholar]
  36. T.-P. Fries and T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84 (2010) 253–304. [Google Scholar]
  37. I. Babuška, U. Banarjee and J.E. Osborn, Generalized finite element methods: main ideas, results, and perspective. Int. J. Comput. Methods 1 (2004) 67–103. [CrossRef] [Google Scholar]
  38. K. Cheng and T. Fries, Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82 (2010) 564–590. [Google Scholar]
  39. K. Dréau, N. Chevaugeon and N. Moës, Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199 (2010) 1922–1936. [CrossRef] [Google Scholar]
  40. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
  41. E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. [Google Scholar]
  42. P. Hansbo, M. Larson and S. Zahedi, A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85 (2014) 90–114. [CrossRef] [MathSciNet] [Google Scholar]
  43. E. Burman, S. Claus, P. Hansbo, M.G. Larson and A. Massing, CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501. [CrossRef] [Google Scholar]
  44. S. Zahedi, A space-time cut finite element method with quadrature in time, in Geometrically Unfitted Finite Element Methods and Applications. Springer (2017) 281–306. [CrossRef] [Google Scholar]
  45. C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300 (2016) 716–733. [Google Scholar]
  46. C. Lehrenfeld and A. Reusken, Analysis of a high order unfitted finite element method for an elliptic interface problem. IMA J. Numer. Anal. 38 (2018) 1351–1387. [CrossRef] [MathSciNet] [Google Scholar]
  47. C. Lehrenfeld and A. Reusken, L2-estimates for a high order unfitted finite element method for elliptic interface problems. J. Numer. Math. 27 (2018) 85–99. [Google Scholar]
  48. E. Burman, P. Hansbo and M. Larson, A cut finite element method with boundary value correction. Math. Comput. 87 (2018) 633–657. [Google Scholar]
  49. E.K. Fidkowski and D. Darmofal, An adaptive simplex cut-cell method for discontinuous Galerkin discretizations of the Navier-Stokes equations, in AIAA Conference Paper (2007). [Google Scholar]
  50. P. Bastian and C. Engwer, An unfitted finite element method using discontinuous Galerkin. Int. J. Numer. Methods Eng. 79 (2009) 1557–1576. [Google Scholar]
  51. R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal. 50 (2012) 3134–3162. [CrossRef] [MathSciNet] [Google Scholar]
  52. P. Areias and T. Belytschko, A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540]. Comput. Methods Appl. Mech. Eng. 9 (2006) 1275–1276. [CrossRef] [Google Scholar]
  53. A. Main and G. Scovazzi, The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J. Comput. Phys. 372 (2018) 972–995. [CrossRef] [MathSciNet] [Google Scholar]
  54. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing 5 (1970) 207–213. [CrossRef] [Google Scholar]
  55. S. Basting and R. Prignitz, An interface-fitted subspace projection method for finite element simulations of particulate flows. Comput. Methods Appl. Mech. Eng. 267 (2013) 133–149. [CrossRef] [Google Scholar]
  56. J. Bramble and J. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. [CrossRef] [MathSciNet] [Google Scholar]
  57. M. Feistauer and V. Sobotíková, Finite element approximation of nonlinear problems with discontinuous coefficients. ESAIM: Math. Modell. Numer. Anal. 24 (1990) 457–500. [CrossRef] [EDP Sciences] [Google Scholar]
  58. A. Ženíšek, The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58 (1990) 51–77. [CrossRef] [MathSciNet] [Google Scholar]
  59. C. Börgers, A triangulation algorithm for fast elliptic solvers based on domain imbedding. SIAM J. Numer. Anal. 27 (1990) 1187–1196. [CrossRef] [MathSciNet] [Google Scholar]
  60. H. Xie, K. Ito, Z.-L. Li and J. Toivanen, A finite element method for interface problems with locally modified triangulation. Contemp. Math. 466 (2008) 179–190. [CrossRef] [Google Scholar]
  61. X. Fang, An isoparametric finite element method for elliptic interface problems with nonhomogeneous jump conditions. WSEAS Trans. Math. 12 (2013) 66–75. [Google Scholar]
  62. S. Omerović and T. Fries, Conformal higher-order remeshing schemes for implicitly defined interface problems. Int. J. Numer. Methods Eng. 109 (2017) 763–789. [CrossRef] [Google Scholar]
  63. R. Rangarajan and A. Lew, Universal meshes: a method for triangulating planar curved domains immersed in nonconforming meshes. Int. J. Numer. Methods Eng. 98 (2014) 236–264. [CrossRef] [Google Scholar]
  64. K. Tanaka, K. Sekine, M. Mizuguchi and S. Oishi, Estimation of Sobolev-type embedding constant on domains with minimally smooth boundary using extension operator. J. Inequalities App. 2015 (2015) 1–23. [CrossRef] [Google Scholar]
  65. E. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30). Vol. 30. Princeton University Press, Princeton, NJ (2016). [Google Scholar]
  66. C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. [CrossRef] [MathSciNet] [Google Scholar]
  67. R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The finite element toolkit Gascoigne 3D. https://www.gascoigne.de (2021). [Google Scholar]
  68. R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The finite element toolkit gascoigne (v1.01). (2021). DOI: 10.5281/zenodo.5574969. [Google Scholar]
  69. T. Richter and G. Judakova, Locally modified second order finite elements. (2021). DOI: 10.5281/ZENODO.5575064. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you