Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1323 - 1354
Published online 12 May 2023
  1. H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. [Google Scholar]
  2. P.F. Antonietti, L. Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. [Google Scholar]
  3. T. Arbogast and M. Gomez, A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13 (2009) 331–348. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Badea, M. Discacciati and A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115 (2010) 195–227. [Google Scholar]
  5. F. Bai, D. Han, X. He and X. Yang, Deformation and coalescence of ferrodroplets in rosensweig model using the phase field and modified level set approaches under uniform magnetic fields. Commun. Nonlinear Sci. Numer. Simul. 85 (2020) 105213. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Baskaran, J.S. Lowengrub, C. Wang and S.M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51 (2013) 2851–2873. [Google Scholar]
  7. G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. [CrossRef] [Google Scholar]
  8. A. Bonito, J.-L. Guermond and S. Lee, Modified pressure-correction projection methods: open boundary and variable time stepping, in Numerical Mathematics and Advanced Applications-ENUMATH 2013. Vol. 103, Springer (2015). [Google Scholar]
  9. A. Bonito, J.-L. Guermond and S. Lee, Numerical simulations of bouncing jets. Int. J. Numer. Meth. Fluids 80 (2016) 53–75. [CrossRef] [Google Scholar]
  10. Y. Boubendir and S. Tlupova, Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35 (2013) B82–B106. [Google Scholar]
  11. F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20 (1999) 175–212. [MathSciNet] [Google Scholar]
  12. S.C. Brenner, A.E. Diegel and L.-Y. Sung, A robust solver for a mixed finite element method for the Cahn-Hilliard equation. J. Sci. Comput. 77 (2018) 1234–1249. [Google Scholar]
  13. G. Brereton and D. Korotney, Coaxial and oblique coalescence of two rising bubbles, in Dynamics of Bubbles and Vortices Near a Free Surface, edited by G. Tryggvason I. Sahin. Vol. 119. ASME (1991). [Google Scholar]
  14. M. Cai, M. Mu and J. Xu, Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47 (2009) 3325–3338. [Google Scholar]
  15. Y. Cai, H. Choi and S. Shen, Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows. Numer. Math. 137 (2017) 417–449. [Google Scholar]
  16. Y. Cao and X. Wang, The Beavers-Joseph interface boundary condition is well approximated by the Beavers–Joseph–Saffman–Jones interface boundary condition. SIAM J. Sci. Comput. 82 (2022) 1020–1044. [Google Scholar]
  17. Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Comm. Math. Sci. 8 (2010) 1–25. [CrossRef] [Google Scholar]
  18. Y. Cao, M. Gunzburger, X.-M. He and X. Wang, Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer. Math. 117 (2011) 601–629. [Google Scholar]
  19. Y. Cao, M. Gunzburger, X.-M. He and X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83 (2014) 1617–1644. [Google Scholar]
  20. A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (2008) 249–280. [MathSciNet] [Google Scholar]
  21. A. Çeşmelioğlu and B. Rivière, Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem. J. Differ. Equ. 252 (2012) 4138–4175. [CrossRef] [Google Scholar]
  22. A. Çeşmelioğlu, V. Girault and B. Rivière, Time-dependent coupling of Navier-Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. 47 (2013) 539–554. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. I. Chakraborty, G. Biswas and P.S. Ghoshdastidar, A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int. J. Heat Mass Tran. 58 (2013) 240–259. [CrossRef] [Google Scholar]
  24. C. Chen and X. Yang, Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn-Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity. ESAIM Math. Model. Numer. Anal. 55 (2021) 2323–2347. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  25. W. Chen, M. Gunzburger, F. Hua and X. Wang, A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM. J. Numer. Anal. 49 (2011) 1064–1084. [Google Scholar]
  26. J. Chen, S. Sun and X. Wang, A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268 (2014) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  27. W. Chen, D. Han and X. Wang, Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry. Numer. Math. 137 (2017) 229–255. [Google Scholar]
  28. P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198 (2009) 3806–3820. [CrossRef] [Google Scholar]
  29. V. DeCaria, W. Layton and M. McLaughlin, A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Eng. 325 (2017) 733–747. [CrossRef] [Google Scholar]
  30. A.E. Diegel, X. Feng and S.M. Wise, Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53 (2015) 127–152. [Google Scholar]
  31. M. Discacciati and L. Gerardo-Giorda, Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38 (2018) 1959–1983. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2009) 315–426. [Google Scholar]
  33. M. Discacciati, P. Gervasio, A. Giacomini and A. Quarteroni, The interface control domain decomposition method for Stokes-Darcy coupling. SIAM J. Numer. Anal. 54 (2016) 1039–1068. [Google Scholar]
  34. X. Feng, Y. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comp. 76 (2007) 539–571. [Google Scholar]
  35. X.L. Feng, T. Tang and J. Yang, Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3 (2013) 59–80. [CrossRef] [MathSciNet] [Google Scholar]
  36. J.A. Fiordilino, W. Layton and Y. Rong, An efficient and modular grad-div stabilization. Comput. Methods Appl. Mech. Eng. 335 (2018) 327–346. [CrossRef] [Google Scholar]
  37. L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer-Verlag, New York (2009). [Google Scholar]
  38. M. Gao and X. Wang, An efficent scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272 (2014) 704–718. [CrossRef] [MathSciNet] [Google Scholar]
  39. Y. Gao, X. He, L. Mei and X. Yang, Decoupled, linear, and energy stable finite element method for the Cahn–Hilliard–Navier–Stokes–Darcy phase field model. SIAM J. Sci. Comput. 40 (2018) B110–B137. [Google Scholar]
  40. Y. Gao, D. Han, X.-M. He and U. Rüde, Unconditionally stable numerical methods for Cahn–Hilliard–Navier–Stokes–Darcy system with different densities and viscosities. J. Comput. Phys. 454 (2022) 110968. [CrossRef] [Google Scholar]
  41. V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal 47 (2009) 2052–2089. [Google Scholar]
  42. J.G. Gluyas and R.E. Swarbrick, Petroleum Geology. Blackwell Publishing (2004). [Google Scholar]
  43. H. Gomez and T.J. Hughes, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230 (2016) 5310–5327. [Google Scholar]
  44. Z. Guan, C. Wang and S.W. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer. Math. 128 (2014) 277–406. [Google Scholar]
  45. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [Google Scholar]
  46. J.-L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. [CrossRef] [Google Scholar]
  47. F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234 (2013) 140–171. [CrossRef] [MathSciNet] [Google Scholar]
  48. M. Gunzburger, X.-M. He and B. Li, On Ritz projection and multi-step backward differentiation schemes in decoupling the Stokes-Darcy model. SIAM J. Numer. Anal. 56 (2018) 397–427. [Google Scholar]
  49. D. Han, D. Sun and X. Wang, Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37 (2014) 3048–3063. [Google Scholar]
  50. D. Han, X. Wang and H. Wu, Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 257 (2014) 3887–3933. [CrossRef] [Google Scholar]
  51. X.-M. He, J. Li, Y. Lin and J. Ming, A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37 (2015) S264–S290. [Google Scholar]
  52. M. Hintermüller, M. Hinze and C. Kahle, An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. J. Comput. Phys. 235 (2013) 810–827. [CrossRef] [MathSciNet] [Google Scholar]
  53. J. Hou, M. Qiu, X.-M. He, C. Guo, M. Wei and B. Bai, A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38 (2016) B710–B739. [Google Scholar]
  54. G. Kanschat and B. Riviére, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. [CrossRef] [MathSciNet] [Google Scholar]
  55. D. Kay and R. Welford, Efficient numerical solution of Cahn–Hilliard–Navier–Stokes fluids in 2D. SIAM J. Sci. Comput. 29 (2007) 2241–2257. [Google Scholar]
  56. J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511–543. [CrossRef] [MathSciNet] [Google Scholar]
  57. J. Kou, S. Sun and X. Wang, Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56 (2018) 3219–3248. [Google Scholar]
  58. J. Kou, X. Wang, S. Du and S. Sun, An energy stable linear numerical method for thermodynamically consistent modeling of two-phase incompressible flow in porous media. J. Comput. Phys. 451 (2022) 110854. [CrossRef] [Google Scholar]
  59. E. Kuniansky, Geological survey karst interest group proceedings, in U.S. Geological Survey Scientific Investigations Report 2008–5023. Bowling Green (2008). Open seminar. [Google Scholar]
  60. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2002) 2195–2218. [Google Scholar]
  61. S. Lee and A.J. Salgadob, Stability analysis of pressure correction schemes for the Navier-Stokes equations with traction boundary conditions. Comput. Methods Appl. Mech. Engrg. 309 (2016) 307–324. [CrossRef] [MathSciNet] [Google Scholar]
  62. H.G. Lee, J. Lowengrub and J. Goodman, Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2002) 492–513. [Google Scholar]
  63. D. Li, Z.H. Qiao and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54 (2016) 1653–1681. [Google Scholar]
  64. H.-L. Liao, T. Tang and T. Zhou, A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414 (2020) 109473. [CrossRef] [MathSciNet] [Google Scholar]
  65. K. Lipnikov, D. Vassilev and I. Yotov, Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126 (2014) 321–360. [Google Scholar]
  66. C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179 (2003) 211–228. [Google Scholar]
  67. J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998) 2617–2654. [Google Scholar]
  68. J. Matusick and P. Zanbergen, Comparative study of groundwater vulnerability in a karst aquifer in central florida. Geophy. Res. Abst. 9 (2007) 1–1. [Google Scholar]
  69. M. Moraiti, On the quasistatic approximation in the Stokes-Darcy model of groundwater-surface water flows. J. Math. Anal. Appl. 394 (2012) 796–808. [Google Scholar]
  70. M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (2007) 1801–1813. [Google Scholar]
  71. M. Mu and X. Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comp. 79 (2010) 707–731. [Google Scholar]
  72. Q. Pan, C. Chen, Y.J. Zhang and X. Yang, A novel hybrid IGA-EIEQ numerical method for the Allen–Cahn/Cahn–Hilliard equations on complex curved surfaces. Comput. Methods Appl. Mech. Eng. 404 (2023) 115767. [CrossRef] [Google Scholar]
  73. T. Qian, X. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68 (2003) 016306. [Google Scholar]
  74. Z.H. Qiao, S. Sun, T. Zhang and Y. Zhang, A new multi-component diffuse interface model with Peng-Robinson equation of state and its scalar auxiliary variable (SAV) approach. Commun. Comput. Phys. 26 (2019) 1597–1616. [CrossRef] [MathSciNet] [Google Scholar]
  75. C. Qiu, X.-M. He, J. Li and Y. Lin, A domain decomposition method for the time-dependent Navier–Stokes–Darcy model with Beavers-Joseph interface condition and defective boundary condition. J. Comput. Phys. 411 (2020) #109400. [CrossRef] [MathSciNet] [Google Scholar]
  76. B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42 (2005) 1959–1977. [Google Scholar]
  77. H. Rui and Y. Sun, A MAC scheme for coupled Stokes-Darcy equations on non-uniform grids. J. Sci. Comput. 82 (2020) 79. [Google Scholar]
  78. J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32 (2010) 1159–1179. [Google Scholar]
  79. J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1169–1691. [Google Scholar]
  80. J. Shen and X. Yang, Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53 (2015) 279–296. [Google Scholar]
  81. J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61 (2019) 474–506. [Google Scholar]
  82. S.K.F. Stoter, P. Müller, L. Cicalese, M. Tuveri, D. Schillinger and T.J.R. Hughes, A diffuse interface method for the Navier–Stokes/Darcy equations: perfusion profile for a patient-specific human liver based on MRI scans. Comput. Methods Appl. Mech. Eng. 321 (2017) 70–102. [CrossRef] [Google Scholar]
  83. C. Taylor and E. Greene, Quantitative approaches in characterizing karst aquifers, in U.S. Geological Survey Karst Interest Group Proceedings. Water Resources Investigations Report 01–4011 (2001). [Google Scholar]
  84. K. Tuber, D. Pocza and C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell. J. Power Sources 124 (2003) 403–414. [Google Scholar]
  85. M. van Sint Annaland, N.G. Deen and J.A.M. Kuipers, Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60 (2005) 2999–3011. [CrossRef] [Google Scholar]
  86. D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31 (2009) 3661–3684. [Google Scholar]
  87. X. Wang, L. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316 (2016) 21–38. [Google Scholar]
  88. Y. Wu, Y. Di, Z. Kang and P. Fakcharoenphol, A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. J. Petrol. Sci. Eng. 78 (2011) 13–22. [Google Scholar]
  89. Y. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous galerkin method for the Allen–Cahn/Cahn–Hilliard system. Commun. Comput. Phys. 5 (2009) 821–835. [MathSciNet] [Google Scholar]
  90. C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44 (2006) 1759–1779. [Google Scholar]
  91. X. Yang, A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng. 122 (2021) 1283–1306. [Google Scholar]
  92. J. Yang and J. Kim, Energy dissipation-preserving time-dependent auxiliary variable method for the phase-field crystal and the Swift-Hohenberg models. Numer. Algorithms 89 (2022) 1865–1894. [Google Scholar]
  93. X. Yang, J. Zhao and X.-M. He, Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343 (2018) 80–97. [CrossRef] [MathSciNet] [Google Scholar]
  94. J. Yang, S. Mao, X.-M. He, X. Yang and Y. He, A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Meth. Appl. Mech. Eng. 356 (2019) 435–464. [CrossRef] [MathSciNet] [Google Scholar]
  95. P. Yue, J. Feng, C. Liu and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515 (2004) 293–317. [CrossRef] [MathSciNet] [Google Scholar]
  96. Y. Zhang, C. Zhou, C. Qu, M. Wei, X.-M. He and B. Bai, Fabrication and verification of a glass-silicon-glass micro-nanofluidic model for investigating multi-phase flow in unconventional dual-porosity porous media. Lab Chip 19 (2019) 4071–4082. [Google Scholar]
  97. H. Zhang, X. Yang and J. Zhang, Stabilized invariant energy quadratization (S-IEQ) method for the molecular beam epitaxial model without slope section. Int. J. Numer. Anal. Model. 18 (2021) 642–655. [MathSciNet] [Google Scholar]
  98. J. Zhao, X. Yang, J. Shen and Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305 (2016) 539–556. [CrossRef] [MathSciNet] [Google Scholar]
  99. G. Zhu, J. Kou, J. Yao, A. Li and S. Sun, A phase-field moving contact line model with soluble surfactants. J. Comput. Phys. 405 (2020) 109170 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you