Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1795 - 1838
Published online 07 June 2023
  1. F. Alvarez and J. Peypouquet, Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete Contin. Dyn. Syst. 25 (2009) 1109–1128. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Andreu, J. Mazón, J. Rossi and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 8 (2008) 189–215. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Andreu, J. Mazón, J. Rossi and J. Toledo. A nonlocal p-laplacian evolution equation with neumann boundary conditions, J. Math. Pures Appl. 90 (2008) 201–227. [Google Scholar]
  4. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi and J.J. Toledo-Melero, Nonlocal Diffusion Problems. Vol 165 of Mathematical Surveys and Monographs. American Mathematical Society (2010). [CrossRef] [Google Scholar]
  5. N. Ayi and N. Pouradier Duteil, Mean-field and graph limits for collective dynamics models with time-varying weights. J. Differ. Equ. 299 (2021) 65–110. [CrossRef] [Google Scholar]
  6. P.W. Bates and A. Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95 (1999) 1119–1139. [CrossRef] [Google Scholar]
  7. P.W. Bates, P.C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138 (1997) 105–136. [CrossRef] [Google Scholar]
  8. H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011). [CrossRef] [Google Scholar]
  9. P. Bénilan, Solutions intégrales d’éuations d’évolution dans un espace de banach. C. R. Acad. Sci. Paris Ser. A-B 274 (1972) A47–A50. [Google Scholar]
  10. P. Bénilan and M. Crandall, Completely accretive operators, in , in Semigroup Theory and Evolution Equations. Vol. 135 of Lecture Notes in Pure and Appl. Math. Dekker, New York (1991) 41–75. [Google Scholar]
  11. U. Biccari, D. Ko and E. Zuazua, Dynamics and control for multi-agent networked systems: a finite-difference approach. Math. Models Methods Appl. Sci. 29 (2019) 755–790. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Bollobás and O. Riordan, Metrics for sparse graphs, in Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series, edited by S. Huczynska, J.D. Mitchell and C.M.E. Roney-Dougal. Cambridge University Press, Cambridge (2009) 211–288. [CrossRef] [Google Scholar]
  13. C. Borgs, J.T. Chayes, H. Cohn and Y. Zhao, An Lp theory of sparse graph convergence II: LD convergence, quotients and right convergence. Ann. Probab. 46 (2018) 337–396. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Borgs, J.T. Chayes, H. Cohn and Y. Zhao, An Lp theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions. Trans. Amer. Math. Soc. 372 (2019) 3019–3062. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Brézis, Opérateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973). [Google Scholar]
  16. T. Bühler and M. Hein, Spectral clustering based on the graph p-Laplacian, in Proceedings of the 26th Annual International Conference on Machine Learning, ICML ‘09. ACM, New York, NY, USA (2009) 81–88. [Google Scholar]
  17. J. Byström, Sharp constants for some inequalities connected to the p-Laplace operator. J. Inequalities Pure Appl. Math. 6 (2005) 56. [Google Scholar]
  18. J. Calder, The game theoretic p-laplacian and semi-supervised learning with few labels. Nonlinearity 32 (2018) 301. [Google Scholar]
  19. C. Carrillo and P. Fife, Spatial effects in discrete generation population models. J. Math. Biol. 50 (2005) 161–188. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. M.G. Crandall and T.M. Liggett, Generation of semigroups of nonlinear transformations on general banach spaces. Amer. J. Math. 93 (1971) 265–298. [CrossRef] [MathSciNet] [Google Scholar]
  21. M.G. Crandall and A. Pazy, Nonlinear evolution equations in banach spaces. Isr. J. Math. 11 (1972) 57–94. [CrossRef] [Google Scholar]
  22. R.A. DeVore and G.G. Lorentz, Constructive Approximation. Vol. 303 of Grundlehren der mathematischen. Springer-Verlag, Berlin Heidelberg (1993). [CrossRef] [Google Scholar]
  23. A. El Alaoui, X. Cheng, A. Ramdas, M.J. Wainwright and M.I. Jordan, Asymptotic behavior of p-based laplacian regularization in semi-supervised learning, in in 29th Annual Conference on Learning Theory. PMLR (2016) 879–906. [Google Scholar]
  24. A. Elmoataz, O. Lezoray, S. Bougleux and V.T. Ta, Unifying local and nonlocal processing with partial difference operators on weighted graphs, in International Workshop on Local and Non-Local Approximation in Image Processing. Switzerland (2008) 11–26. [Google Scholar]
  25. A. Elmoataz, X. Desquesnes, Z. Lakhdari and O. Lézoray, Nonlocal infinity Laplacian equation on graphs with applications in image processing and machine learning. Math. Comput. Simul. 102 (2014) 153–163. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61. [Google Scholar]
  27. P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, edited by B Fiedler. Springer-Verlag (2002). [Google Scholar]
  28. P.C. Fife and X. Wang, A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions. Adv. Differ. Equ. 3 (1998) 85–110. [Google Scholar]
  29. R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non-linéaires. RAIRO: Anal. Numér. 2 (1975) 41–76. [Google Scholar]
  30. Y. Hafiene, J. Fadili and A. Elmoataz, Nonlocal p-Laplacian evolution problems on graphs. SIAM J. Numer. Anal. 56 (2018) 1064–1090. [CrossRef] [MathSciNet] [Google Scholar]
  31. Y. Hafiene, M. Fadili, C. Chesneau and A.E. Moataz, Continuum limit of the nonlocal p-laplacian evolution problem on random in homogeneous graphs. ESAIM: M2AN 54 (2020) 565–589. [CrossRef] [EDP Sciences] [Google Scholar]
  32. W. Hoeffding, The Strong Law of Large Numbers for u-Statistics. Institute of Statistics Mimeograph Series 302, North Carolina State University (1961). [Google Scholar]
  33. D. Kaliuzhnyi-Verbovetskyi and G. Medvedev, The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49 (2017) 1333–1355. [CrossRef] [MathSciNet] [Google Scholar]
  34. T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19 (1967) 508–520. [CrossRef] [Google Scholar]
  35. B. Kawohl, Variations on the p-Laplacian. Nonlinear Elliptic Part. Differ. Equ. Contemp. Math. 540 (2011) 35–46. [CrossRef] [Google Scholar]
  36. Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Jpn. 27 (1975) 640–665. [CrossRef] [Google Scholar]
  37. K. Kobayashi, Y. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach spaces. Osaka J. Math. 21 (1984) 281–310. [MathSciNet] [Google Scholar]
  38. L. Lovász, Large Networks and Graph Limits. Vol. 60. American Mathematical Society (2012). [Google Scholar]
  39. G.S. Medvedev, The nonlinear heat equation on dense graphs. SIAM J. Math. Anal. 46 (2014) 2743–2766. [CrossRef] [MathSciNet] [Google Scholar]
  40. G.S. Medvedev, The continuum limit of the kuramoto model on sparse random graphs. Commun. Math. Sci. 17 (2019) 883–898. [CrossRef] [MathSciNet] [Google Scholar]
  41. R.H. Nochetto and G. Savaré, Nonlinear evolution governed by accretive operators in banach spaces: error control and applications. Math. Models Methods Appl. Sci. 16 (2006) 439–477. [CrossRef] [MathSciNet] [Google Scholar]
  42. W. Rudin, Real and Complex Analysis, 3rd edition. McGraw-Hill (1987). [Google Scholar]
  43. D. Slepcev and M. Thorpe, Analysis of p-laplacian regularization in semisupervised learning. SIAM J. Math. Anal. 51 (2019) 2085–2120. [CrossRef] [MathSciNet] [Google Scholar]
  44. N.G. Trillos and D. Slepčev, Continuum limit of total variation on point clouds. Arch. Ration. Mech. Anal. 220 (2016) 193–241. [CrossRef] [MathSciNet] [Google Scholar]
  45. X. Wang, Metastability and stability of patterns in a convolution model for phase transitions. J. Differ. Equ. 183 (2002) 434–461. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you