Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1747 - 1793
Published online 07 June 2023
  1. A.M. Afonso, F.T. Pinho and M.A. Alves, The kernel-conformation constitutive laws. J. Non-Newtonian Fluid Mech. 167 (2012) 30–37. [Google Scholar]
  2. M.A. Alves, P.J. Oliveira and F.T. Pinho, Numerical methods for viscoelastic fluid flows. Ann. Rev. Fluid Mech. 53 (2021) 509–541. [CrossRef] [Google Scholar]
  3. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  4. N. Balci, B. Thomases, M. Renardy and C.R. Doering, Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166 (2011) 546–553. [CrossRef] [Google Scholar]
  5. J.W. Barrett and S. Boyaval, Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 21 (2011) 1783–1837. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.W. Barrett and S. Boyaval, Finite element approximation of the FENE-P model. IMA J. Numer. Anal. 38 (2018) 1599–1660. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.W. Barrett and E. Süli, Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [Google Scholar]
  8. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Bermudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 1049–1071. [Google Scholar]
  10. R.B. Bird and J.M. Wiest, Constitutive equations for polymeric liquids. Ann. Rev. Fluid Mech. 27 (1995) 169–193. [CrossRef] [Google Scholar]
  11. R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72 (2003) 131–157. [Google Scholar]
  12. F. Bouchut, H. Ounaissa and B. Perthame, Upwinding of the source term at interfaces for Euler equations with high friction. Comput. Math. App. 53 (2007) 361–375. [Google Scholar]
  13. S. Boyaval, Lid-driven-cavity simulations of Oldroyd-B models using free-energy-dissipative schemes, in Numerical Mathematics and Advanced Applications 2009, Springer (2010) 191–198. [CrossRef] [Google Scholar]
  14. S. Boyaval, T. Lelièvre and C. Mangoubi, Free-energy-dissipative schemes for the Oldroyd-B model. Math. Model. Numer. Anal. 43 (2009) 523–561. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Cambridge (2004). [Google Scholar]
  16. CALIF3S, A software components library for the computation of fluid flows. [Google Scholar]
  17. G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [Google Scholar]
  18. R. Comminal, J. Spangenberg and J.H. Hattel, Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation. J. Non-Newtonian Fluid Mech. 223 (2015) 37–61. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Crouzeix and P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Série Rouge 7 (1973) 33–75. [Google Scholar]
  20. H. Damanik, J. Hron, A. Ouazzi and S. Turek, A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems. J. Non-Newtonian Fluid Mech. 165 (2010) 1105–1113. [CrossRef] [Google Scholar]
  21. A. Duran, F. Marche, R. Turpault and C. Berthon, Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes. J. Comput. Phys. 287 (2015) 184–206. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281–285. [CrossRef] [Google Scholar]
  23. R. Fattal and R. Kupferman, Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 23–37. [CrossRef] [Google Scholar]
  24. T. Gallouët, R. Herbin, J.-C. Latché and K. Mallem, Convergence of the Marker-And-Cell scheme for the incompressible Navier-Stokes equations on non-uniform grids. Found. Comput. Math. 18 (2018) 249–289. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Grapsas, R. Herbin, W. Kheriji and J.-C. Latché, An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2 (2016) 51–97. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.M. Greenberg and A.Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  27. A.M. Grillet, B. Yang, B. Khomami and E.S. Shaqfeh, Modeling of viscoelastic lid driven cavity flow using finite element simulations. J. Non-Newtonian Fluid Mech. 88 (1999) 99–131. [CrossRef] [Google Scholar]
  28. F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197–213. [CrossRef] [Google Scholar]
  29. F.H. Harlow and J.E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182–2189. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Herbin, W. Kheriji and J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. Math. Model. Numer. Anal. 48 (2014) 1807–1857. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  31. D. Hu and T. Lelievre, New entropy estimates for the Oldroyd-B model and related models. Commun. Math. Sci. 5 (2007) 909–916. [CrossRef] [MathSciNet] [Google Scholar]
  32. M.A. Hulsen, R. Fattal and R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (2005) 27–39. [CrossRef] [Google Scholar]
  33. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [Google Scholar]
  34. T. Katsaounis, B. Perthame and C. Simeoni, Upwinding sources at interfaces in conservation laws. Appl. Math. Lett. 17 (2004) 309–316. [CrossRef] [MathSciNet] [Google Scholar]
  35. J.-C. Latché and K. Saleh, A convergent staggered scheme for the variable density incompressible Navier-Stokes equations. Math. Comput. 87 (2018) 581–632. [Google Scholar]
  36. J.-C. Latché, B. Piar and K. Saleh, A discrete kinetic energy preserving convection operator for variable density flows on locally refined staggered meshes. (2019). [Google Scholar]
  37. Y.-J. Lee and J. Xu, New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput. Methods Appl. Mech. Eng. 195 (2006) 1180–1206. [CrossRef] [Google Scholar]
  38. R.J. LeVeque and W. Jinghua, A linear hyperbolic system with stiff source terms, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects: Proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3 to 8, 1992. Friedrich Vieweg & Sohn, Wiesbaden (1993) 401–408. [Google Scholar]
  39. E. Lorin and V. Seignole, Convection systems with stiff source terms. Math. Models Methods Appl. Sci. 13 (2003) 971–1018. [CrossRef] [MathSciNet] [Google Scholar]
  40. A. Lozinski and R.G. Owens, An energy estimate for the Oldroyd-B model: theory and applications. J. Non-Newtonian Fluid Mech. 112 (2003) 161–176. [CrossRef] [Google Scholar]
  41. M. Lukáčová-Medvidová, H. Notsu and B. She, Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid. Int. J. Numer. Methods Fluids 81 (2016) 523–557. [CrossRef] [Google Scholar]
  42. L. Moreno, R. Codina, J. Baiges and E. Castillo, Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. Comput. Methods Appl. Mech. Eng. 354 (2019) 706–731. [Google Scholar]
  43. T.-W. Pan, J. Hao and R. Glowinski, On the simulation of a time-dependent cavity flow of an Oldroyd-B fluid. Int. J. Numer. Methods Fluids 60 (2009) 791–808. [CrossRef] [Google Scholar]
  44. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97–111. [CrossRef] [Google Scholar]
  45. M. Renardy, Mathematical Analysis of Viscoelastic Flows. SIAM (2000). [CrossRef] [Google Scholar]
  46. P. Saramito, On a modified non-singular log-conformation formulation for Johnson-Segalman viscoelastic fluids. J. Non-Newtonian Fluid Mech. 211 (2014) 16–30. [CrossRef] [Google Scholar]
  47. M.F. Tomé, A. Castelo, A.M. Afonso, M.A. Alves and F. Pinho, Application of the log-conformation tensor to three-dimensional time-dependent free surface flows. J. Non-Newtonian Fluid Mech. 175 (2012) 44–54. [CrossRef] [Google Scholar]
  48. K. Yapici, B. Karasozen and Y. Uludag, Finite volume simulation of viscoelastic laminar flow in a lid-driven cavity. J. Non-Newtonian Fluid Mech. 164 (2009) 51–65. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you