Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1111 - 1142
Published online 08 May 2023
  1. S. Amdouni, K. Mansouri, Y. Renard, M. Arfaoui and M. Moakher, Numerical convergence and stability of mixed formulation with x-FEM cut-off. Eur. J. Comput. Mech. 21 (2012) 160–173. [CrossRef] [Google Scholar]
  2. P. Angot, C.-H. Bruneau and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (1999) 497–520. [CrossRef] [MathSciNet] [Google Scholar]
  3. N.M. Atallah, C. Canuto and G. Scovazzi, Analysis of the shifted boundary method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 358 (2020) 112609, 33. [CrossRef] [Google Scholar]
  4. F. Ballarin and G. Rozza, Multiphenics. (2020). [Google Scholar]
  5. D. Boffi, F. Brezzi and M. Fortin, Finite Elements for the Stokes Problem. Vol. 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008). Mixed Finite Elements, Compatibility Conditions, and Applications, edited by Daniele Boffi and Lucia Gastaldi. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July (2006). [Google Scholar]
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 3. Springer (2008). [Google Scholar]
  7. E. Burman, Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman and P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM Math. Model. Numer. Anal. 48 (2014) 859–874. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. P.G. Ciarlet, Mathematical Elasticity: Volume I: Three-Dimensional Elasticity. North-Holland (1988). [Google Scholar]
  10. S. Cotin, M. Duprez, V. Lleras, A. Lozinski and K. Vuillemot, ϕ-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer, 1st edition, in Partition of Unity Methods (Wiley Series in Computational Mechanics) edited by S. Bordas and A. Menk. Wiley (2022). [Google Scholar]
  11. M. Duprez and A. Lozinski, ϕ-FEM: a finite element method on domains defined by level-sets. SIAM J. Numer. Anal. 58 (2020) 1008–1028. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Duprez, V. Lleras and A. Lozinski, A new ϕ-FEM approach for problems with natural boundary conditions. Numer. Methods Part. Differ. Equ. 39 (2023) 281–303. [CrossRef] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). [Google Scholar]
  14. M. Fournié and A. Lozinski, Stability and optimal convergence of unfitted extended finite element methods with Lagrange multipliers for the Stokes equations. in Geometrically Unfitted Finite Element Methods and Applications. Vol. 121 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2017) 143–182. [CrossRef] [Google Scholar]
  15. R. Glowinski, T.-W. Pan, T.I. Hesla and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2001) 363–426. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Guzmán and M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comput. 87 (2018) 2091–2112. [Google Scholar]
  18. M.-C. Lai and C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160 (2000) 705–719. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Main and G. Scovazzi, The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J. Comput. Phys. 372 (2018) 972–995. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Massing, M.G. Larson, A. Logg and M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61 (2014) 604–628. [Google Scholar]
  21. R. Mittal and G. Iaccarino, Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (2005) 239–261. [CrossRef] [Google Scholar]
  22. C.S. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (1977) 220–252. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you