Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1589 - 1617
Published online 26 May 2023
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). [Google Scholar]
  2. V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda, A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion. Comput. Math. Appl. 70 (2015) 132–157. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Anaya, M. Bendahmane and M. Sepúlveda, Numerical analysis for a three interacting species model with nonlocal and cross diffusion. ESAIM: Math. Model. Numer. Anal. 49 (2015) 171–192. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. B. Andreianov, M. Bendahmane and R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Methods Appl. Sci. 21 (2011) 307–344. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Baladron, D. Fasoli, O. Faugeras and J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh–Nagumo neurons. J. Math. Neurosci. 2 (2012) 50. [CrossRef] [Google Scholar]
  6. M. Bessemoulin-Chatard, M. Herda and T. Rey, Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations. Math. Comput. 89 (2020) 1093–1133. [Google Scholar]
  7. M. Braukhoff, I. Perugia and P. Stocker, An entropy structure preserving space-time formulation for cross-diffusion systems: analysis and galerkin discretization. SIAM J. Num. Anal. 60 (2022) 364–395. [CrossRef] [Google Scholar]
  8. M. Burger, M. Di Francesco, J.-F. Pietschmann and B. Schlake, Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010) 2842–2871. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Burger, J.A. Carrillo, J.-F. Pietschmann and M. Schmidtchen, Segregation effects and gap formation in cross-diffusion models. Interfaces Free Bound. 22 (2020) 175–203. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Cancès and B. Gaudeul, A convergent entropy diminishing finite volume scheme for a cross-diffusion system. SIAM J. Numer. Anal. 58 (2020) 2684–2710. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Cancès, C. Chainais-Hillairet, A. Gerstenmayer and A. Jüngel, Finite-volume scheme for a degenerate cross-diffusion model motivated from ion transport. Numer. Methods Part. Differ. Equ. 35 (2019) 545–575. [CrossRef] [Google Scholar]
  12. J.A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17 (2015) 233–258. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.A. Carrillo, Y. Huang and M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species. SIAM J. Appl. Math. 78 (2018) 1078–1104. [Google Scholar]
  14. J.A. Carrillo, F. Filbet and M. Schmidtchen, Convergence of a finite volume scheme for a system of interacting species with cross-diffusion. Numer. Math. 145 (2020) 473–511. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Chainais-Hillairet and M. Herda, Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. IMA J. Numer. Anal. 40 (2020) 2473–2504. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Chainais-Hillairet, M. Herda, S. Lemaire and J. Moatti, Long-time behaviour of hybrid finite volume schemes for advection–diffusion equations: linear and nonlinear approaches. Numer. Math. 151 (2022) 963–1016. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59. [CrossRef] [Google Scholar]
  19. L. Chen, E.S. Daus, A. Holzinger and A. Jüngel, Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems. J. Nonlinear Sci. 31 (2021) 38. [CrossRef] [Google Scholar]
  20. L. Desvillettes, T. Lepoutre, A. Moussa and A. Trescases, On the entropic structure of reaction-cross diffusion systems. Commun. Part. Differ. Equ. 40 (2015) 1705–1747. [CrossRef] [Google Scholar]
  21. H. Dietert and A. Moussa, Persisting entropy structure for nonlocal cross-diffusion systems. Preprint arXiv:2101.02893 (2021). [Google Scholar]
  22. P. Domschke, D. Trucu, A. Gerisch and M. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361 (2014) 41–60. [CrossRef] [Google Scholar]
  23. B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 465 (2009) 3687–3708. [MathSciNet] [Google Scholar]
  24. L.C. Evans, Partial Differential Equations. Vol. 19 of Grad. Stud. Math., 2nd edition. American Mathematical Society (AMS), Providence, RI (2010). [Google Scholar]
  25. F. Filbet and M. Herda, A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure. Numer. Math. 137 (2017) 535–577. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Fontbona and S. Méléard, Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium. J. Math. Biol. 70 (2015) 829–854. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  27. G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003) 655–673. [CrossRef] [MathSciNet] [Google Scholar]
  28. V. Giunta, T. Hillen, M.A. Lewis and J.R. Potts, Local and global existence for non-local multi-species advection–diffusion models. SIAM J. Appl. Dyn. Syst. 21 (2022) 1686–1708. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28 (2015) 1963–2001. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations. Springer, Cham; BCAM – Basque Center for Applied Mathematics, Bilbao (2016). [Google Scholar]
  31. A. Jüngel and A. Zurek, A convergent structure-preserving finite-volume scheme for the Shigesada–Kawasaki–Teramoto population system. SIAM J. Numer. Anal. 59 (2021) 2286–2309. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Jüngel, S. Portisch and A. Zurek, Nonlocal cross-diffusion systems for multi-species populations and networks. Nonlin. Anal. 219 (2022) 112800. [CrossRef] [Google Scholar]
  33. S.N. Kruzhkov, Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications. Math. Notes Acad. Sci. USSR 6 (1969) 517–523. [Google Scholar]
  34. T. Lepoutre and A. Moussa, Entropic structure and duality for multiple species cross-diffusion systems. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 159 (2017) 298–315. [CrossRef] [Google Scholar]
  35. S.A. Levin and L.A. Segel, Hypothesis for origin of planktonic patchiness. Nature 259 (1976) 659–659. [CrossRef] [PubMed] [Google Scholar]
  36. M. Mimura, Y. Nishiura and M. Yamaguti, Some diffusive prey and predator systems and their bifurcation problems. Ann. New York Acad. Sci. 316 (1979) 490–510. [CrossRef] [Google Scholar]
  37. A. Moussa, From nonlocal to classical Shigesada–Kawasaki–Teramoto systems: triangular case with bounded coefficients. SIAM J. Math. Anal. 52 (2020) 42–64. [CrossRef] [MathSciNet] [Google Scholar]
  38. H. Murakawa and H. Togashi, Continuous models for cell-cell adhesion. J. Theor. Biol. 374 (2015) 1–12. [CrossRef] [Google Scholar]
  39. K.J. Painter, J.M. Bloomfield, J.A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull. Math. Biol. 77 (2015) 1132–1165. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. J.R. Potts and M.A. Lewis, Spatial memory and taxis-driven pattern formation in model ecosystems. Bull. Math. Biol. 81 (2019) 2725–2747. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. F. Rellich, Ein Satz über mittlere Konvergenz. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1930) 30–35. [Google Scholar]
  42. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theor. Biol. 79 (1979) 83–99. [CrossRef] [Google Scholar]
  43. Z. Sun, J.A. Carrillo and C.-W. Shu, An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinet. Relat. Models 12 (2019) 885–908. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you