Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1473 - 1509
Published online 18 May 2023
  1. H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2009) 463–506. [Google Scholar]
  2. M. Albani, R. Bergamaschini and F. Montalenti, Dynamics of pit filling in heteroepitaxy via phase-field simulations. Phys. Rev. B 94 (2016) 075303. [Google Scholar]
  3. M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local. Interfaces Free Boundaries 16 (2014) 243–268. [CrossRef] [MathSciNet] [Google Scholar]
  4. N.D. Alikakos, P.W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128 (1994) 165–205. [Google Scholar]
  5. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of Variations and Partial Differential Equations (Pisa, 1996), Springer, Berlin (2000) 5–93. [CrossRef] [Google Scholar]
  6. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (2000). [Google Scholar]
  7. B. Aymard, U. Vaes, M. Pradas and S. Kalliadasis, A linear, second-order, energy stable, fully adaptive finite element method for phase-field modelling of wetting phenomena. J. Comput. Phys. X 2 (2019) 100010. [MathSciNet] [Google Scholar]
  8. R. Backofen, S.M. Wise, M. Salvalaglio and A. Voigt, Convexity splitting in a phase field model for surface diffusion. Int. J. Numer. Anal. Model. 16 (2019) 192–209. [MathSciNet] [Google Scholar]
  9. J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. [Google Scholar]
  10. J.W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–462. [Google Scholar]
  11. M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner and H. Garcke, A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30 (2014) 4033–4039. [Google Scholar]
  12. S. Bhattacharyya and T.A. Abinandanan, A study of phase separation in ternary alloys. Bull. Mater. Sci. 26 (2003) 193–197. [CrossRef] [Google Scholar]
  13. F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model. M2AN Math. Model. Numer. Anal. 40 (2006) 653–687. [Google Scholar]
  14. F. Boyer and F. Nabet, A DDFV method for a Cahn–Hilliard/Stokes phase field model with dynamic boundary conditions. ESAIM: Math. Model. Numer. Anal. 51 (2016) 1691–1731. [Google Scholar]
  15. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Media 82 (2010) 463–483. [Google Scholar]
  16. M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Methods Appl. Sci. 34 (2011) 1157–1180. [Google Scholar]
  17. E. Bretin and S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics. Interfaces Free Bound. 19 (2017) 141–182. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Bretin, A. Danescu, J. Penuelas and S. Masnou, Multiphase mean curvature flows with high mobility contrasts: a phase-field approach, with applications to nanowires. J. Comput. Phys. 365 (2018) 324–349. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Bretin, R. Denis, J.-O. Lachaud and E. Oudet, Phase-field modelling and computing for a large number of phases. ESAIM: M2AN 53 (2019) 805–832. [CrossRef] [EDP Sciences] [Google Scholar]
  20. E. Bretin, S. Masnou and É. Oudet, Phase-field approximations of the Willmore functional and flow. Numer. Math. 131 (2015) 115–171. [Google Scholar]
  21. E. Bretin, S. Masnou, A. Sengers and G. Terii, Approximation of surface diffusion flow: a second order variational Cahn-Hilliard model with degenerate mobilities. Preprint arXiv:2007.03793 (2020). [Google Scholar]
  22. J.W. Cahn, Critical point wetting. J. Chem. Phys. 66 (1977) 3667–3672. [CrossRef] [Google Scholar]
  23. J.W. Cahn, C.M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7 (1996) 287–301. [CrossRef] [Google Scholar]
  24. D.G. Caraballo, The triangle inequalities and lower semi-continuity of surface energy of partitions. Proc. R. Soc. Edinb. A: Math. 139 (2009) 449–457. [Google Scholar]
  25. A. Carlson, M. Do-Quang and G. Amberg, Dissipation in rapid dynamic wetting. J. Fluid Mech. 682 (2011) 213–240. [CrossRef] [Google Scholar]
  26. L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108 (1998) 147–158. [Google Scholar]
  27. X. Chen, D. Hilhorst and E. Logak, Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12 (2011) 527–549. [Google Scholar]
  28. M. Cheng and J.A. Warren, An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227 (2008) 6241–6248. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.I.M. Copetti, Numerical experiments of phase separation in ternary mixtures. Math. Comput. Simul. 52 (2000) 41–51. [Google Scholar]
  30. S. Dai and Q. Du, Motion of interfaces governed by the Cahn-Hilliard equation with highly disparate diffusion mobility. SIAM J. Appl. Math. 72 (2012) 1818–1841. [Google Scholar]
  31. S. Dai and Q. Du, Coarsening mechanism for systems governed by the Cahn-Hilliard equation with degenerate diffusion mobility. Multiscale Model. Simul. 12 (2014) 1870–1889. [Google Scholar]
  32. S. Dai and Q. Du, Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility. J. Comput. Phys. 310 (2016) 85–108. [CrossRef] [MathSciNet] [Google Scholar]
  33. F. Diewald, C. Kuhn, M. Heier, K. Langenbach, M. Horsch, H. Hasse and R. Müller, Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors. Comput. Mater. Sci. 141 (2018) 185–192. [CrossRef] [Google Scholar]
  34. S. Dong, On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows. Comput. Methods Appl. Mech. Eng. 247–248 (2012) 179–200. [CrossRef] [Google Scholar]
  35. E. Dornel, J.-C. Barbe, F. de Crécy, G. Lacolle and J. Eymery, Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO2. Phys. Rev. B 73 (2006) 115427. [Google Scholar]
  36. Q. Du and X. Feng, Chapter 5 – the phase field method for geometric moving interfaces and their numerical approximations, in Geometric Partial Differential Equations – Part I, Vol. 21 of Handbook of Numerical Analysis, Edited by A. Bonito and R.H. Nochetto, Elsevier (2020) 425–508. [CrossRef] [Google Scholar]
  37. M. Dziwnik, A. Münch and B. Wagner, An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit. Nonlinearity 30 (2017) 1465–1496. [Google Scholar]
  38. C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. [Google Scholar]
  39. M. Elsey and B. Wirth, A simple and efficient scheme for phase field crystal simulation. ESAIM Math. Model. Numer. Anal. 47 (2013) 1413–1432. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  40. S. Esedoḡlu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions. Comm. Pure Appl. Math. 68 (2015) 808–864. [CrossRef] [MathSciNet] [Google Scholar]
  41. D.J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, in Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Vol. 529 of Materials Research Society Symposium Proceedings, MRS, Warrendale, PA (1998) 39–46. [Google Scholar]
  42. H. Gomez and T.J.R. Hughes, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230 (2011) 5310–5327. [CrossRef] [MathSciNet] [Google Scholar]
  43. C. Gugenberger, R. Spatschek and K. Kassner, Comparison of phase-field models for surface diffusion. Phys. Rev. E 78 (2008) 016703. [Google Scholar]
  44. D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1999) 96–127. [CrossRef] [MathSciNet] [Google Scholar]
  45. W. Jiang, W. Bao, C.V. Thompson and D.J. Srolovitz, Phase field approach for simulating solid-state dewetting problems. Acta Mater. 60 (2012) 5578–5592. [CrossRef] [Google Scholar]
  46. W. Jiang and Q. Zhao, Sharp-interface approach for simulating solid-state dewetting in two dimensions: a Cahn-Hoffman ξ-vector formulation. Phys. D: Nonlinear Phenom. 390 (2019) 69–83. [Google Scholar]
  47. W. Jiang, Q. Zhao and W. Bao, Sharp-interface model for simulating solid-state dewetting in three dimensions. SIAM J. Appl. Math. 80 (2020) 1654–1677. [Google Scholar]
  48. J. Kim, Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Eng. 196 (2007) 4779–4788. [Google Scholar]
  49. J. Kim, A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows. Comput. Methods Appl. Mech. Eng. 198 (2009) 3105–3112. [CrossRef] [Google Scholar]
  50. J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility. Appl. Numer. Math. 59 (2009) 1029–1042. [CrossRef] [MathSciNet] [Google Scholar]
  51. J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for ternary Cahn-Hilliard systems. Commun. Math. Sci. 2 (2004) 53–77. [CrossRef] [MathSciNet] [Google Scholar]
  52. T. Kitashima, J. Wang and H. Harada, Phase-field simulation with the CALPHAD method for the microstructure evolution of multi-component Ni-base superalloys. Intermetallics 16 (2008) 239–245. [CrossRef] [Google Scholar]
  53. A.A. Lee, A. Münch and E. Süli, Degenerate mobilities in phase field models are insufficient to capture surface diffusion. Appl. Phys. Lett. 107 (2015) 081603. [CrossRef] [Google Scholar]
  54. A.A. Lee, A. Münch and E. Süli, Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76 (2016) 433–456. [Google Scholar]
  55. H.G. Lee and J. Kim, A second-order accurate non-linear difference scheme for the N-component Cahn-Hilliard system. Phys. A: Stat. Mech. Appl. 387 (2008) 4787–4799. [Google Scholar]
  56. H.G. Lee, J.W. Choi and J. Kim, A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system. Phys. A: Stat. Mech. Appl. 391 (2012) 1009–1019. [Google Scholar]
  57. X. Li, J. Lowengrub, A. Rätz and A. Voigt, Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7 (2009) 81–107. [CrossRef] [MathSciNet] [Google Scholar]
  58. Y. Li, J.-I. Choi and J. Kim, Multi-component Cahn-Hilliard system with different boundary conditions in complex domains. J. Comput. Phys. 323 (2016) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  59. Y. Li, D. Jeong, J. Shin and J. Kim, A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains. Comput. Math. Appl. 65 (2013) 102–115. [CrossRef] [MathSciNet] [Google Scholar]
  60. C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179 (2003) 211–228. [Google Scholar]
  61. F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to geometric measure theory, in Cambridge Studies in Advanced Mathematics, Cambridge University Press (2012). [Google Scholar]
  62. B. Merriman, J.K. Bence and S. Osher, Diffusion generated motion by mean curvature, in Computational Crystal Growers Workshop, Edited by JE Taylor, Taylor, American Mathematical Society, Providence, Rhode Island (1992). [Google Scholar]
  63. S. Metzger, On numerical schemes for phase-field models for electrowetting with electrolyte solutions. PAMM 15 (2015) 715–718. [Google Scholar]
  64. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Bolletino Unione Mat. Ital. B 14 (1977) 285–299. [Google Scholar]
  65. F. Morgan, Lowersemicontinuity of energy clusters. Proc. R. Soc. Edinb. Sect. A: Math. 127 (1997) 819–822. [Google Scholar]
  66. M. Naffouti, R. Backofen, M. Salvalaglio, T. Bottein, M. Lodari, A. Voigt, T. David, A. Benkouider, I. Fraj, L. Favre, A. Ronda, I. Berbezier, D. Grosso, M. Abbarchi and M. Bollani, Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures. Sci. Adv. 3 (2017) eaao1472. [Google Scholar]
  67. R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. London A Math. Phys. Sci. 422 (1989) 261–278. [Google Scholar]
  68. C. Pesce and A. Münch, How do degenerate mobilities determine singularity formation in Cahn-Hilliard equations? Multiscale Model. Simul. 19 (2021) 1143–1166. [Google Scholar]
  69. A. Rätz, A. Ribalta and A. Voigt, Surface evolution of elastically stressed films under deposition by a diffuse interface model. J. Comput. Phys. 214 (2006) 187–208. [CrossRef] [MathSciNet] [Google Scholar]
  70. M. Salvalaglio, R. Backofen, R. Bergamaschini, F. Montalenti and A. Voigt, Faceting of equilibrium and metastable nanostructures: a phase-field model of surface diffusion tackling realistic shapes. Cryst. Growth Des. 15 (2015) 2787–2794. [CrossRef] [Google Scholar]
  71. M. Salvalaglio, R. Backofen, A. Voigt and F. Montalenti, Morphological evolution of pit-patterned Si (001) substrates driven by surface-energy reduction. Nanoscale Res. Lett. 12 (2017) 554. [Google Scholar]
  72. M. Salvalaglio, M. Selch, A. Voigt and S.M. Wise, Doubly degenerate diffuse interface models of anisotropic surface diffusion. Math. Methods Appl. Sci. 44 (2021) 5406–5417. [Google Scholar]
  73. M. Salvalaglio, A. Voigt and S.M. Wise, Doubly degenerate diffuse interface models of surface diffusion. Math. Methods Appl. Sci. 44 (2021) 5385–5405. [Google Scholar]
  74. J. Shen, X. Yang and H. Yu, Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284 (2015) 617–630. [Google Scholar]
  75. J. Shin, D. Jeong and J. Kim, A conservative numerical method for the Cahn-Hilliard equation in complex domains. J. Comput. Phys. 230 (2011) 7441–7455. [CrossRef] [MathSciNet] [Google Scholar]
  76. J. Shin, H.G. Lee and J.-Y. Lee, First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327 (2016) 519–542. [CrossRef] [MathSciNet] [Google Scholar]
  77. J. Shin, H.G. Lee and J.Y. Lee, Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme. J. Comput. Phys. 347 (2017) 367–381. [CrossRef] [MathSciNet] [Google Scholar]
  78. D.N. Sibley, A. Nold, N. Savva and S. Kalliadasis, The contact line behaviour of solid–liquid–gas diffuse-interface models. Phys. Fluids 25 (2013) 092111. [Google Scholar]
  79. D.N. Sibley, A. Nold, N. Savva and S. Kalliadasis, On the moving contact line singularity: asymptotics of a diffuse-interface model. Eur. Phys. J. E 36 (2013) 26. [CrossRef] [PubMed] [Google Scholar]
  80. D.J. Srolovitz and S.A. Safran, Capillary instabilities in thin films. ii. kinetics. J. Appl. Phys. 60 (1986) 255–260. [CrossRef] [Google Scholar]
  81. K.E. Teigen, X. Li, J. Lowengrub, F. Wang and A. Voigt, A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 4 (2009) 1009–1037. [Google Scholar]
  82. A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model. M2AN Math. Model. Numer. Anal. 43 (2009) 1027–1044. [Google Scholar]
  83. D. Wang, X.-P. Wang and X. Xu, An improved threshold dynamics method for wetting dynamics. J. Comput. Phys. 392 (2019) 291–310. [CrossRef] [MathSciNet] [Google Scholar]
  84. Y. Wang, W. Jiang, W. Bao and D.J. Srolovitz, Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Phys. Rev. B 91 (2015) 045303. [Google Scholar]
  85. X. Wei, S. Jiang, A. Klöckner and X.-P. Wang, An integral equation method for the Cahn-Hilliard equation in the wetting problem. J. Comput. Phys. 419 (2020) 109521. [CrossRef] [MathSciNet] [Google Scholar]
  86. S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. [Google Scholar]
  87. X. Xu and W. Ying, An adaptive threshold dynamics method for three-dimensional wetting on rough surfaces. Commun. Comput. Phys. 29 (2021) 57–79. [CrossRef] [MathSciNet] [Google Scholar]
  88. J. Yang and J. Kim, An unconditionally stable second-order accurate method for systems of Cahn-Hilliard equations. Commun. Nonlinear Sci. Numer. Simul. 87 (2020) 105276. [CrossRef] [MathSciNet] [Google Scholar]
  89. T. Young, An essay on the cohesion of fluids. Philos. Trans. R. Soc. London Ser.I 95 (1805) 65–87. [Google Scholar]
  90. S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidiscipl. Optim. 33 (2006) 89. [Google Scholar]
  91. J. Zhu, L.-Q. Chen, J. Shen and V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60 (1999) 3564–3572. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you