Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 3, May-June 2023
|
|
---|---|---|
Page(s) | 1731 - 1746 | |
DOI | https://doi.org/10.1051/m2an/2023034 | |
Published online | 26 May 2023 |
- A. Bermúdez de Castro López, A mixed method for the elastoplastic torsion problem. IMA J. Numer. Anal. 2 (1982) 325–334. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics. 3rd edition. Springer, New York (2008). [Google Scholar]
- H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18 (1968) 115–175. [CrossRef] [MathSciNet] [Google Scholar]
- H. Brézis and M. Sibony, Équivalence de deux inéquations variationnelles et applications. Arch. Ration. Mech. Anal. 41 (1971) 254–265. [CrossRef] [Google Scholar]
- H.R. Brezis and G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153–180. [CrossRef] [Google Scholar]
- E. Burman, P. Hansbo, M.G. Larson and R. Stenberg, Galerkin least squares finite element method for the obstacle problem. Comput. Meth. Appl. Mech. Eng. 313 (2017) 362–374. [CrossRef] [Google Scholar]
- L.A. Caffarelli and A. Friedman, The free boundary for elastic-plastic torsion problems. Trans. Amer. Math. Soc. 252 (1979) 65–97. [CrossRef] [MathSciNet] [Google Scholar]
- F. Chouly and P. Hild, On a finite element approximation for the elastoplastic torsion problem. Appl. Math. Lett. 132 (2022) 6. [Google Scholar]
- F. Chouly, P. Hild and Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comp. 84 (2015) 1089–1112. [Google Scholar]
- F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin and Y. Renard, An overview of recent results on Nitsche’s method for contact problems, in Geometrically Unfitted Finite Element Methods and Applications. Vol. 121 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2017) 93–141. [CrossRef] [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). [Google Scholar]
- M. Cicuttin, A. Ern and T. Gudi, Hybrid high-order methods for the elliptic obstacle problem. J. Sci. Comput. 83 (2020) 18. [CrossRef] [Google Scholar]
- J. Dabaghi and G. Delay, A unified framework for high-order numerical discretizations of variational inequalities. Comput. Math. Appl. 92 (2021) 62–75. [CrossRef] [MathSciNet] [Google Scholar]
- G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Vol. 219 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York (1976). [CrossRef] [Google Scholar]
- A. Ern and J.L. Guermond, Finite Elements I. Approximation and Interpolation. Vol. 72 of Texts in Applied Mathematics. Springer, Cham (2021). [CrossRef] [Google Scholar]
- R.S. Falk and B. Mercier, Error estimates for elasto-plastic problems. RAIRO Anal. Numér. 11 (1977) 135–144. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint. Arch. Ration. Mech. Anal. 58 (1975) 309–315. [CrossRef] [Google Scholar]
- R. Glowinski, Lectures on Numerical Methods for Nonlinear Variational Problems. Vol. 65 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York (1980). [Google Scholar]
- R. Glowinski, J.L. Lions and R. Trémoliéres, Numerical Analysis of Variational Inequalities. Vol. 8 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York (1981). [Google Scholar]
- T. Gustafsson and G.D. McBain, scikit-fem: a Python package for finite element assembly. J. Open Source Softw. 5 (2020) 2369. [CrossRef] [Google Scholar]
- T. Gustafsson, R. Stenberg and J. Videman, Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55 (2017) 2718–2744. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Hu, F. Chouly, P. Hu, G. Cheng and S.P.A. Bordas, Skew-symmetric Nitsche’s formulation in isogeometric analysis: dirichlet and symmetry conditions, patch coupling and frictionless contact. Comput. Methods Appl. Mech. Eng. 341 (2018) 188–220. [CrossRef] [Google Scholar]
- G. Idone, A. Maugeri and C. Vitanza, Variational inequalities and the elastic–plastic torsion problem. J. Optim. Theory Appl. 117 (2003) 489–501. [CrossRef] [MathSciNet] [Google Scholar]
- D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Vol 88 of Pure and Applied Mathematics. Academic Press Inc, New York-London (1980). [Google Scholar]
- K. Kunisch and G. Stadler, Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. M2AN Math. Model. Numer. Anal. 39 (2005) 827–854. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- D. Maclaurin, D. Duvenaud and R.P. Adams, Autograd: effortless gradients in numpy, in ICML 2015 AutoML Workshop. Vol. 238 (2015). [Google Scholar]
- R. Mlika, Y. Renard and F. Chouly, An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325 (2017) 265–288. [Google Scholar]
- K. Mouallif, Approximation du probléme de la torsionélasto-plastique d’une barre cylindrique par régularisation et discrétisation d’un probléme inf-sup sur . Travaux Sém. Anal. Convexe 12 (1982) 24. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.