Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2227 - 2255
Published online 03 July 2023
  1. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (2009) 123004. [CrossRef] [Google Scholar]
  2. M. Arioli and D. Loghin, Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009) 2924–2951. [Google Scholar]
  3. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. École Norm. Sup. 3 (1970) 185–233. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  5. E. Bécache, L. Bourgeois, L. Franceschini and J. Dardé, Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case. Inverse Prob. Imaging 9 (2015) 971–1002. [CrossRef] [Google Scholar]
  6. C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comp. 44 (1985) 71–79. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.B. Bochev and M.D. Gunzburger, Gunzburger, Least-Squares Finite Element Methods. Vol. 166 Applied Mathematical Sciences. Springer, New York (2009). [Google Scholar]
  8. L. Bourgeois and L. Chesnel, On quasi-reversibility solutions to the Cauchy problem for the Laplace equation: regularity and error estimates. ESAIM Math. Model. Numer. Anal. 54 (2020) 493–529. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. L. Bourgeois and A. Recoquillay, A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems. ESAIM Math. Model. Numer. Anal. 52 (2018) 123–145. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. J.H. Bramble, J.E. Pasciak and J. Xu, Parallel multilevel preconditioners. Math. Comput. 55 (1990) 1–22. [CrossRef] [Google Scholar]
  11. E. Burman, Stabilised finite element methods for ill-posed problems with conditional stability, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2016) 93–127. [Google Scholar]
  12. E. Burman, The elliptic Cauchy problem revisited: control of boundary data in natural norms. C. R. Math. Acad. Sci. Paris 355 (2017) 479–484. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139 (2018) 505–528. [Google Scholar]
  14. E. Burman, P. Hansbo and M.G. Larson, Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization. Inverse Prob. 34 (2018) 035004. [CrossRef] [Google Scholar]
  15. E. Burman, J. Ish-Horowicz and L. Oksanen, Fully discrete finite element data assimilation method for the heat equation. ESAIM Math. Model. Numer. Anal. 52 (2018) 2065–2082. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. E. Burman, A. Feizmohammadi and L. Oksanen, A finite element data assimilation method for the wave equation. Math. Comput. 89 (2020) 1681–1709. [Google Scholar]
  17. E. Burman, A. Feizmohammadi, A. Münch and L. Oksanen, Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM Math. Model. Numer. Anal. 55 (2021) S969–S991. [CrossRef] [EDP Sciences] [Google Scholar]
  18. E. Burman, A. Feizmohammadi, A. Münch and L. Oksanen, Spacetime finite element methods for control problems subject to the wave equation. Preprint arXiv:2109.07890 (2021). [Google Scholar]
  19. E. Burman, G. Delay and A. Ern, The unique continuation problem for the heat equation discretized with a high-order space-time nonconforming method. hal 03720960 (2022). [Google Scholar]
  20. N. Burq, Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bull. Soc. Math. France 126 (1998) 601–637. [CrossRef] [MathSciNet] [Google Scholar]
  21. W. Dahmen, R. Stevenson and J. Westerdiep, Accuracy controlled data assimilation for parabolic problems. Math. Comput. 91 (2022) 557–595. [Google Scholar]
  22. T. Führer, Multilevel decompositions and norms for negative order Sobolev spaces. Math. Comput. 91 (2021) 183–218. [CrossRef] [Google Scholar]
  23. T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92 (2021) 27–36. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Funken, D. Praetorius and P. Wissgott, Efficient implementation of adaptive P1-FEM in Matlab. Comput. Methods Appl. Math. 11 (2011) 460–490. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Gantner and R.P. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM Math. Model. Numer. Anal. 55 (2021) 283–299. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  26. O. Imanuvilov and M. Yamamoto, Conditional stability in a backward parabolic system. Appl. Anal. 93 (2014) 2174–2198. [CrossRef] [MathSciNet] [Google Scholar]
  27. V. Isakov, Inverse Problems for Partial Differential Equations. Vol. 127 of Applied Mathematical Sciences, 2nd edition. Springer, New York (2006). [Google Scholar]
  28. M.V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data. Inverse Prob. 22 (2006) 495–514. [CrossRef] [Google Scholar]
  29. I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149–192. [Google Scholar]
  30. J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. PDE 10 (2017) 983–1015. [Google Scholar]
  31. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Vol. I. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  32. M. Page and D. Praetorius, Convergence of adaptive FEM for some elliptic obstacle problem. Appl. Anal. 92 (2013) 595–615. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Schöberl, C++11 implementation of finite elements in ngsolve. Technical report, Institute for Analysis and Scientific Computing. Vienna University of Technology (2014). [Google Scholar]
  34. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  35. R.P. Stevenson and R. van Venetië, Uniform preconditioners for problems of negative order. Math. Comput. 89 (2020) 645–674. [Google Scholar]
  36. R.P. Stevenson and R. van Venetië, Uniform preconditioners for problems of positive order. Comput. Math. Appl. 79 (2020) 3516–3530. [CrossRef] [MathSciNet] [Google Scholar]
  37. R.P. Stevenson and R. van Venetië, Uniform preconditioners of linear complexity for problems of negative order. Comput. Methods Appl. Math. 21 (2021) 469–478. [CrossRef] [MathSciNet] [Google Scholar]
  38. R.P. Stevenson and J. Westerdiep, Minimal residual space-time discretizations of parabolic equations: asymmetric spatial operators. Comput. Math. Appl. 101 (2021) 107–118. [CrossRef] [MathSciNet] [Google Scholar]
  39. R.P. Stevenson and J. Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. 41 (2021) 28–47. [CrossRef] [MathSciNet] [Google Scholar]
  40. A.N. Tikhonov, On the stability of inverse problems. C. R. (Doklady) Acad. Sci. URSS (N.S.) 39 (1943) 176–179. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you