Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2371 - 2396
DOI https://doi.org/10.1051/m2an/2023051
Published online 18 July 2023
  1. E. Ahmed, C. Japhet and M. Kern, Space-time domain decomposition for two-phase flow between different rock types. Comput. Methods Appl. Mech. Eng. 371 (2020) 113294. [CrossRef] [Google Scholar]
  2. S. Ali Hassan, C. Japhet and M. Vohralk, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations. Electron. Trans. Numer. Anal. 49 (2018) 151–181. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Bennequin, M.J. Gander, L. Gouarin and L. Halpern, Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions. Numer. Math. 134 (2016) 513–567. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.-M. Berthe, C. Japhet and P. Omnes, Space-time domain decomposition with finite volumes for porous media applications, in Domain Decomposition Methods in Science and Engineering XXI, edited by J. Erhel, M.J. Gander, L. Halpern, G. Pichot, T. Sassi and O. Widlund. Springer International Publishing, Cham (2014) 567–575. [CrossRef] [Google Scholar]
  5. E. Blayo, L. Halpern and C. Japhet, Optimized Schwarz waveform relaxation algorithms with nonconforming time discretization for coupling convection-diffusion problems with discontinuous coefficients, in Domain Decomposition Methods in Science and Engineering XVI, edited by O.B. Widlund and D.E. Keyes. Springer, Berlin Heidelberg, Berlin, Heidelberg (2007) 267–274. [CrossRef] [Google Scholar]
  6. E. Blayo, A. Rousseau and M. Tayachi, Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics. SMAI J. Comput. Math. 3 (2017) 117–137. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.Q. Bui, C. Japhet, Y. Maday and P. Omnes, Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems. SIAM J. Numer. Anal. 60 (2022) 913–939. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Ciobanu, L. Halpern, X. Juvigny and J. Ryan, Overlapping domain decomposition applied to the Navier-Stokes equations, in Domain Decomposition Methods in Science and Engineering XXII, edited by T. Dickopf, M.J. Gander, L. Halpern, R. Krause and L.F. Pavarino. Springer International Publishing, Cham (2016) 461–470. [CrossRef] [Google Scholar]
  9. S. Clement, F. Lemarié and E. Blayo, Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients. SMAI J. Comput. Math. 8 (2022) 99–124. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Descombes, V. Dolean and M.J. Gander, Schwarz waveform relaxation methods for systems of semi-linear reaction-diffusion equations, in Domain Decomposition Methods in Science and Engineering XIX, Y. Huang, R. Kornhuber, O. Widlund and J. Xu. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011) 423–430. [CrossRef] [Google Scholar]
  11. J.W. Eaton, D. Bateman, S. Hauberg and R. Wehbring, GNU Octave version 7.1.0 manual: a high-level interactive language for numerical computations) (2022). [Google Scholar]
  12. M.J. Gander, Overlapping Schwarz waveform relaxation for parabolic problems, in Tenth International Conference on Domain Decomposition Methods. Contemporary Mathematics, edited by J. Mandel, C. Farhat, X.-C. Cai. Vol. 218. AMS, Boulder, CO (1998). [Google Scholar]
  13. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44 (2006) 699–731. [Google Scholar]
  14. M.J. Gander and L. Halpern, Méthodes de relaxation d’ondes (SWR) pour l’équation de la chaleur en dimension 1. C. R. Math. Acad. Sci. Paris 336 (2003) 519–524. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. [Google Scholar]
  16. M.J. Gander and V. Martin, A detailed Fourier mode analysis of Schwarz waveform relaxation methods, in Contributed lecture at the 27th International Domain Decomposition Conference. DD27, Prague, Czech Republic (2022). [Google Scholar]
  17. M.J. Gander and A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19 (1998) 2014–2031. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.J. Gander, L. Halpern, F. Hubert and S. Krell, Discrete optimization of robin transmission conditions for anisotropic diffusion with discrete duality finite volume methods. Vietnam J. Math. 49 (2021) 1349–1378. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.J. Gander, L. Halpern, F. Hubert and S. Krell, Optimized Schwarz methods with general ventcell transmission conditions for fully anisotropic diffusion with discrete duality finite volume discretizations. Moroccan J. Pure Appl. Anal. 7 (2021) 182–213. [CrossRef] [Google Scholar]
  20. M.J. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41 (2003) 1643–1681. [CrossRef] [MathSciNet] [Google Scholar]
  21. M.J. Gander, Y. Jiang and B. Song, A superlinear convergence estimate for the parareal Schwarz waveform relaxation algorithm. SIAM J. Sci. Comput. 41 (2019) A1148–A1169. [CrossRef] [Google Scholar]
  22. E. Giladi and H. Keller, Space-time domain decomposition for parabolic problems. Numer. Math. 93 (2002) 279–313. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.H. Golub and C.F. Van Loan, Matrix Computations. Johns Hopkins University Press (1996). [Google Scholar]
  24. R. Guetat, Méthode de parallélisation en temps: application aux méthodes de décomposition de domaine. Ph.D. thesis, UPMC Université Paris 6 et Ecole polytechnique de Tunisie (2011). [Google Scholar]
  25. F. Haeberlein, Méthodes de décomposition de domaine espace temps pour le transport réactif: Application au stockage géologique de CO2. Ph.D. thesis, Université Paris 13 (2011). [Google Scholar]
  26. L. Halpern, C. Japhet and J. Szeftel, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems. SIAM J. Numer. Anal. 50 (2012) 2588–2611. [CrossRef] [MathSciNet] [Google Scholar]
  27. R.D. Haynes and K. Mohammad, Fully discrete Schwarz waveform relaxation on two bounded overlapping subdomains, in Domain Decomposition Methods in Science and Engineering XXV, R. Haynes, S. MacLachlan, X.-C. Cai, L. Halpern, H.H. Kim, A. Klawonn and O. Widlund. Springer International Publishing, Cham (2020) 159–166. [CrossRef] [Google Scholar]
  28. T.-T.-P. Hoang, J. Jaffré, C. Japhet, M. Kern and J.E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51 (2013) 3532–3559. [CrossRef] [MathSciNet] [Google Scholar]
  29. T.-T.-P. Hoang, C. Japhet, M. Kern and J.E. Roberts, Space-time domain decomposition for reduced fracture models in mixed formulation. SIAM J. Numer. Anal. 54 (2016) 288–316. [CrossRef] [MathSciNet] [Google Scholar]
  30. C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: absorbing boundary conditions, in Absorbing Boundaries and Layers, Domain Decomposition Methods. Nova Sci. Publ., Huntington, NY (2001) 348–373. [Google Scholar]
  31. C. Japhet, F. Nataf and F. Rogier, The optimized order 2 method: application to convection-diffusion problems. Future Gener. Comput. Syst. 18 (2001) 17–30. [CrossRef] [Google Scholar]
  32. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, edited by T.F. Chan, R. Glowinski, J. Périaux and O. Widlund. SIAM, Philadelphia, PA (1990) 202–223. [Google Scholar]
  33. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Vol. I. Springer-Verlag, New York (1972). [Google Scholar]
  34. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182. Vol. II. Springer-Verlag, New York (1972). [Google Scholar]
  35. V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl. Numer. Math. 52 (2005) 401–428. [CrossRef] [MathSciNet] [Google Scholar]
  36. V. Martin, Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations. SIAM J. Sci. Comput. 31 (2009) 3595–3625. [CrossRef] [MathSciNet] [Google Scholar]
  37. D. Serre, Les matrices – Théorie et pratique. Dunod (2001). [Google Scholar]
  38. S. Thery, On the links between observed and theoretical convergence rates for Schwarz waveform relaxation algorithm for the time-dependent problems, in 26th International Domain Decomposition Conference, Dec 2020. China, Hong Kong (2020). [Google Scholar]
  39. S. Thery, C. Pelletier, F. Lemarié and E. Blayo, Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients. Numer. Algorithms 89 (2022) 1145–1181. [CrossRef] [MathSciNet] [Google Scholar]
  40. C.W. Ueberhuber, Numerical Computation 2. Springer (1995). [Google Scholar]
  41. S.-L. Wu, Schwarz waveform relaxation algorithm for heat equations with distributed delay. Therm. Sci. 20 (2016) 659–667. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you