Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2349 - 2370
Published online 18 July 2023
  1. T. Apel, D. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with dirac delta source terms. SIAM J. Numer. Anal. 49 (2011) 992–1005. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.R. Berger and A. Karageorghis, The method of fundamental solutions for layered elastic materials. Eng. Anal. Boundary Elem. 25 (2001) 877–886. [CrossRef] [Google Scholar]
  3. C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237–1271. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error estimates of the finite element method for an elliptic problem with a dirac source term. Numer. Methods Part. Differ. Equ. 34 (2018) 97–120. [CrossRef] [Google Scholar]
  5. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44. Springer (2013). [CrossRef] [Google Scholar]
  6. W.M. Boon, D.C. Koppenol and F.J. Vermolen, A multi-agent cell-based model for wound contraction. J. Biomech. 49 (2016) 1388–1401. [CrossRef] [Google Scholar]
  7. R. Chaudhari, Myofibroblasts: functions, evolution, origins, and the role in disease. SRM J. Res. Dental Sci. 6 (2015) 234–239. [CrossRef] [Google Scholar]
  8. C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one-and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Darby, B. Laverdet, F. Bonté and A. Desmoulière, Fibroblasts and myofibroblasts in wound healing. Clin. Cosmetic Invest. Dermatol. 7 (2015) 301–311. [Google Scholar]
  10. F. Drechsler, C.H. Wolters, T. Dierkes, H. Si and L. Grasedyck, A full subtraction approach for finite element method based source analysis using constrained delaunay tetrahedralisation. NeuroImage 46 (2009) 1055–1065. [CrossRef] [PubMed] [Google Scholar]
  11. S. Enoch and D. Leaper, Basic science of wound healing. Surgery (Oxford) 26 (2008) 31–37. [CrossRef] [Google Scholar]
  12. K. Erikson, Finite element methods of optimal order for problems with singular data. Math. Comput. 44 (1985) 345–360. [CrossRef] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). [Google Scholar]
  14. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, American Mathematical Society (2010). [Google Scholar]
  15. I.G. Gjerde, K. Kumar and J.M. Nordbotten, A singularity removal method for coupled 1d–3d flow models. Comput. Geosci. 24 (2020) 443–457. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.J. Griffiths, Introduction to Electrodynamics. Prentice Hall, Upper Saddle River, NJ (2005). [Google Scholar]
  17. M. Hematiyan, M. Arezou, N.K. Dezfouli and M. Khoshroo, Some remarks on the method of fundamental solutions for two-dimensional elasticity. CMES-Comput. Model. Eng. Sci. 121 (2019) 661–686. [Google Scholar]
  18. L.R. Herrmann, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3 (1965) 1896–1900. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. [Google Scholar]
  20. A. Kufner, Weighted Sobolev Spaces. Vol. 31. John Wiley & Sons Incorporated (1985). [Google Scholar]
  21. B. Li and H.-C. Wang, Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20 (2011) 108–120. [CrossRef] [Google Scholar]
  22. A. Logg, K.-A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Vol. 84. Springer Science & Business Media (2012). [CrossRef] [Google Scholar]
  23. Q. Peng and F. Vermolen, Agent-based modelling and parameter sensitivity analysis with a finite-element method for skin contraction. Biomech. Modeling Mechanobiol. 19 (2020) 2525–2551. [CrossRef] [PubMed] [Google Scholar]
  24. Q. Peng and F. Vermolen, Numerical methods to compute stresses and displacements from cellular forces: application to the contraction of tissue. J. Comput. Appl. Math. 404 (2022) 113892. [CrossRef] [Google Scholar]
  25. L. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. [Google Scholar]
  26. X. Wang, Y. Guo and S. Bousba, Direct imaging for the moment tensor point sources of elastic waves. J. Comput. Phys. 448 (2022) 110731. [CrossRef] [Google Scholar]
  27. C. Weinberger, W. Cai and D. Barnett, Lecture Notes-Elasticity of Microscopic Structures. ME340-Stanford University (2005). [Google Scholar]
  28. M. Xue and C. Jackson, Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4 (2015) 119–136. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you