Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2319 - 2348
DOI https://doi.org/10.1051/m2an/2023053
Published online 11 July 2023
  1. R. Abgrall, P. Öffner and H. Ranocha, Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: application to structure preserving discretization. J. Comput. Phys. 453 (2022) 24. [Google Scholar]
  2. R. Abgrall, E.L. Mélédo, P. Öffner and D. Torlo, Relaxation deferred correction methods and their applications to residual distribution schemes. SMAI J. Comput. Math. 8 (2022) 125–160. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Benvenuti and L. Farina, Eigenvalue regions for positive systems. Syst. Control Lett. 51 (2004) 325–330. [CrossRef] [Google Scholar]
  4. H. Burchard, E. Deleersnijder and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47 (2003) 1–30. [Google Scholar]
  5. A. Chertock, S. Cui, A. Kurganov and T. Wu, Steady state and sign preserving semi-implicit Runge-Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53 (2015) 2008–2029. [CrossRef] [Google Scholar]
  6. M. Ciallella, L. Micalizzi, P. Öffner and D. Torlo, An arbitrary high order and positivity preserving method for the shallow water equations. Comput. Fluids 247 (2022) 21. [Google Scholar]
  7. P. Deuflhard and F. Bornemann, Scientific computing with ordinary differential equations, in Texts Appl. Math.. Vol. 42. Springer, New York, NY (2002). [Google Scholar]
  8. A. Dutt, L. Greengard and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations. BIT 40 (2000) 241–266. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Han Veiga, P. Öffner and D. Torlo, DeC and ADER: similarities, differences and a unified framework. J. Sci. Comput. 87 (2021) 35. [CrossRef] [Google Scholar]
  10. J. Huang and C.-W. Shu, Positivity-preserving time discretizations for production–destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78 (2019) 1811–1839. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Huang, W. Zhao and C.-W. Shu, A third-order unconditionally positivity-preserving scheme for production–destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79 (2019) 1015–1056. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Huang, T. Izgin, S. Kopecz, A. Meister and C.-W. Shu, On the stability of strong-stability-preserving modified Patankar–Runge–Kutta schemes. Preprint Preprint arxiv:2205.01488 (2022). [Google Scholar]
  13. T. Izgin and P. Öffner, A study of the local dynamics of MPDeC and higher order MPRK methods (code). https://github.com/IzginThomas/MPRK43II.git (2023). [Google Scholar]
  14. T. Izgin, S. Kopecz and A. Meister, Recent developments in the field of modified Patankar–Runge–Kutta-methods. PAMM 21 (2021) e202100027. [CrossRef] [Google Scholar]
  15. T. Izgin, S. Kopecz and A. Meister, On lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes. ESAIM: M2AN 56 (2022) 1053–1080. [CrossRef] [EDP Sciences] [Google Scholar]
  16. T. Izgin, S. Kopecz and A. Meister, On the stability of unconditionally positive and linear invariants preserving time integration schemes. SIAM J. Numer. Anal. 60 (2022) 3029–3051. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Izgin, P. Öffner and D. Torlo, Modified Patankar: Oscillations and Lyapunov Stability (code). https://github.com/accdavlo/Modified-Patankar-Oscillations-and-Lyapunov-Stability (2022). [Google Scholar]
  18. S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. BIT 58 (2018) 691–728. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Kopecz and A. Meister, On the existence of three-stage third-order modified Patankar–Runge–Kutta schemes. Numer. Algorithms 81 (2019) 1473–1484. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.G. Luenberger, Introduction to Dynamic Systems. Theory, Models, and Applications. Vol. XIV. John Wiley & Sons, New York (1979) 446. [Google Scholar]
  21. A. Meister and S. Ortleb, On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76 (2014) 69–94. [CrossRef] [Google Scholar]
  22. P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Ranocha, L. Lóczi and D.I. Ketcheson, General relaxation methods for initial-value problems with application to multistep schemes. Numer. Math. 146 (2020) 875–906. [CrossRef] [MathSciNet] [Google Scholar]
  24. E.M. Stein and R. Shakarchi, Complex analysis, in Princeton Lectures in Analysis. Vol. 2. Princeton University Press, Princeton, NJ (2003). [Google Scholar]
  25. A. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Vol. 2. Cambridge University Press (1998). [Google Scholar]
  26. E.C. Titchmarsh, The Theory of Functions, second ed., Oxford University Press, Oxford (1939). [Google Scholar]
  27. D. Torlo, P. Öffner and H. Ranocha, Issues with positivity-preserving Patankar-type schemes. Appl. Numer. Math. 182 (2022) 117–147. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you