Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2493 - 2528
Published online 01 August 2023
  1. Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. [Google Scholar]
  2. Y. Achdou and M. Laurière, Mean field games and applications: numerical aspects, in Mean field games, edited by P. Cardaliaguet and A. Porretta. Springer, Cham (2020) 249–307. [CrossRef] [Google Scholar]
  3. Y. Achdou and A. Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J. Numer. Anal. 54 (2016) 161–186. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51 (2013) 2585–2612. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130397. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. R.A. Adams and J.F. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
  7. G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. OUP Oxford (2007). [Google Scholar]
  8. C. Bertucci and A. Cecchin, Mean field games master equations: from discrete to continuous state space. Preprint: arXiv:2207.03191 (2022). [Google Scholar]
  9. J.F. Bonnans, S. Hadikhanloo and L. Pfeiffer, Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 83 (2021) 1431–1464. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.F. Bonnans, P. Lavigne and L. Pfeiffer, Discrete potential mean field games: duality and numerical resolution. Math. Program. (2023) 1–38. DOI: 10.1007/s10107-023-01934-8. [Google Scholar]
  11. P. Cardaliaguet, Notes on mean field games. Technical report (2010). [Google Scholar]
  12. P. Cardaliaguet and S. Hadikhanloo, Learning in mean field games: the fictitious play. ESAIM: Control Optim. Calculus Variations 23 (2017) 569–591. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Finan. Econ. 12 (2018) 335–363. [CrossRef] [Google Scholar]
  14. E. Carlini and F.J. Silva, A fully discrete semi-lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52 (2014) 45–67. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Carlini and F.J. Silva, A semi-lagrangian scheme for a degenerate second order mean field game system. Discrete Continuous Dyn. Syst. 35 (2015) 4269. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.S. Clark, Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987) 279–281. [Google Scholar]
  17. S. Hadikhanloo and F.J. Silva, Finite mean field games: fictitious play and convergence to a first order continuous mean field game. J. Math. Pures Appl. 132 (2019) 369–397. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Springer Verlag (1993). [Google Scholar]
  19. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. [CrossRef] [MathSciNet] [Google Scholar]
  20. N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Vol. 12. American Mathematical Society (1996). [Google Scholar]
  21. N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Vol. 96. American Mathematical Society (2008). [CrossRef] [Google Scholar]
  22. A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567–588. [CrossRef] [MathSciNet] [Google Scholar]
  23. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type. Vol. 23. American Mathematical Society (1988). [Google Scholar]
  24. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Lavigne and L. Pfeiffer, Generalized conditional gradient and learning in potential mean field games. Preprint: https://arXiv:2109.05785. [Google Scholar]
  26. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer Verlag (1971). [CrossRef] [Google Scholar]
  27. Y. Nesterov, Lectures on Convex Optimization. Vol. 137. Springer (2018). [CrossRef] [Google Scholar]
  28. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Vol. 22. Springer Science & Business Media (1995). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you