Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2529 - 2556
DOI https://doi.org/10.1051/m2an/2023057
Published online 01 August 2023
  1. K. Abood, T. Das, D.R. Lester, S.P. Usher, A.D. Stickland, C. Rees, N. Eshtiaghi and D.J. Batstone, Characterising sedimentation velocity of primary waste water solids and effluents. Water Res. 219 (2022) 118555. [CrossRef] [Google Scholar]
  2. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The fenics project version 1.5. Arch. Numer. Softw. 3 (2015) 9–23. [Google Scholar]
  3. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: M2AN 49 (2015) 1399–1427. [CrossRef] [EDP Sciences] [Google Scholar]
  4. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, A mixed-primal finite element approximation of a sedimentation–consolidation system. Math. Models Methods Appl. Sci. 26 (2016) 867–900. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, A vorticity-based fully-mixed formulation for the 3D Brinkman-Darcy problem. Comput. Methods Appl. Mech. Eng. 307 (2016) 68–95. [CrossRef] [Google Scholar]
  6. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, A mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport. IMA J. Numer. Anal. 41 (2020) 381–411. [Google Scholar]
  7. P.R. Amestoy, I.S. Duff and J.-Y. L-Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520. [CrossRef] [Google Scholar]
  8. G. Anestis, Eine eindimensionale theorie der sedimentation in Absetzbehältern veränderlichen querschnitts und in zentrifugen. Ph.D. thesis, TU Vienna, Austria (1981). [Google Scholar]
  9. D.N. Arnold, F. Brezzi and J. Douglas, PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1 (1984) 347–367. [CrossRef] [Google Scholar]
  10. D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76 (2007) 1699–1724. [CrossRef] [Google Scholar]
  11. G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Eng. 371 (2020) 113285. [CrossRef] [Google Scholar]
  12. G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Calcolo 59 (2022) 6. [CrossRef] [Google Scholar]
  13. F. Blanchette, T. Peacock and J.W.M. Bush, The Boycott effect in magma chambers. Res. Lett. 31 (2004) L05611. [Google Scholar]
  14. A. Borhan and A. Acrivos, The sedimentation of nondilute suspensions in inclined settlers. Phys. Fluids 31 (1988) 3488. [CrossRef] [Google Scholar]
  15. R. Bürger, S. Evje, K.H. Karlsen and K.-A. Lie, Numerical methods for the simulation of the settling of flocculated suspensions. Chem. Eng. J. 80 (2000) 91–104. [CrossRef] [Google Scholar]
  16. R. Bürger, W.L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes. ZAMM Z. Angew. Math. Mech. 80 (2000) 79–92. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Bürger, J.J.R. Damasceno and K.H. Karlsen, A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section. Int. J. Miner. Process. 73 (2004) 183–208. [CrossRef] [Google Scholar]
  18. R. Bürger, K.H. Karlsen and J.D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. 65 (2005) 882–940. [Google Scholar]
  19. R. Bürger, S. Diehl, S. Farås and I. Nopens, On reliable and unreliable numerical methods for the simulation of secondary settling tanks in wastewater treatment. Comput. Chem. Eng. 41 (2012) 93–105. [CrossRef] [Google Scholar]
  20. R. Bürger, R. Ruiz-Baier, K. Schneider and H. Torres, A multiresolution method for the simulation of sedimentation in inclined channels. Int. J. Numer. Anal. Model. 9 (2012) 479–504. [Google Scholar]
  21. R. Bürger, R. Ruiz-Baier and H. Torres, A stabilized finite volume element formulation for sedimentation-consolidation processes. SIAM J. Sci. Comput. 34 (2012) B265–B289. [CrossRef] [Google Scholar]
  22. R. Bürger, J. Careaga and S. Diehl, Entropy solutions of a scalar conservation law modeling sedimentation in vessels with varying cross-sectional area. SIAM J. Appl. Math. 77 (2017) 789–811. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Bürger, J. Careaga and S. Diehl, A simulation model for settling tanks with varying cross-sectional area. Chem. Eng. Commun. 204 (2017) 1270–1281. [CrossRef] [Google Scholar]
  24. M.C. Bustos, F. Concha, R. Bürger and E.M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999). [CrossRef] [Google Scholar]
  25. J.-P. Chancelier, M. Cohen de Lara and F. Pacard, Analysis of a conservation PDE with discontinuous flux: a model of settler. SIAM J. Appl. Math. 54 (1994) 954–995. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Chun-Liang and Z. Jie-Min, Eulerian simulation of sedimentation flows in vertical and inclined vessels. Chin. Phys. 14 (2005) 620–627. [CrossRef] [Google Scholar]
  27. E. Colmenares, G.N. Gatica and J.C. Rojas, A Banach spaces-based mixed-primal finite element method for the coupling of brinkman flow and nonlinear transport. Calcolo 59 (2022) 51. [CrossRef] [Google Scholar]
  28. T.K. Deb, N. Lebaz, M. Sinan Ozdemir, R. Govoreanu, A. Mhamdi, G. Sin and N. Sheibat-Othman, Monitoring and modeling of creaming in oil-in-water emulsions. Ind. Eng. Chem. Res. 61 (2022) 4638–4647. [CrossRef] [Google Scholar]
  29. A. Deininger, E. Holthausen and P.A. Wilderer, Velocity and solids distribution in circular secondary clarifiers: Full scale measurements and numerical modelling. Water Res. 32 (1998) 2951–2958. [CrossRef] [Google Scholar]
  30. J.E. Dickinson and K.P. Galvin, Fluidized bed desliming in fine particle flotation – part I. Chem. Eng. Sci. 108 (2014) 283–298. [CrossRef] [Google Scholar]
  31. S. Diehl, Dynamic and steady-state behavior of continuous sedimentation. SIAM J. Appl. Math. 57 (1997) 991–1018. [CrossRef] [MathSciNet] [Google Scholar]
  32. S. Diehl, A regulator for continuous sedimentation in ideal clarifier-thickener units. J. Eng. Math. 60 (2008) 265–291. [CrossRef] [Google Scholar]
  33. S. Diehl, The solids-flux theory – confirmation and extension by using partial differential equations. Water Res. 42 (2008) 4976–4988. [CrossRef] [Google Scholar]
  34. E. Doroodchi, D.F. Fletcher and K.P. Galvin, Influence of inclined plates on the expansion behaviour of particulate suspensions in a liquid fluidised bed. Chem. Eng. Sci. 59 (2004) 3559–3567. [CrossRef] [Google Scholar]
  35. D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids. Vol. 135. Springer-Verlag, New York (1999). [CrossRef] [Google Scholar]
  36. G.A. Ekama and P. Marais, Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. Water Res. 38 (2004) 495–506. [CrossRef] [Google Scholar]
  37. G.A. Ekama, J.L. Barnard, F.W. Günthert, P. Krebs, J.A. McCorquodale, D.S. Parker and E.J. Wahlberg, Secondary settling tanks: theory, modelling, design and operation. IAWQ Scientific and Technical Report No. 6, International Association on Water Quality, England (1997). [Google Scholar]
  38. K.P. Galvin, A. Callen, J. Zhou and E. Doroodchi, Performance of the reflux classifier for gravity separation at full scale. Minerals Eng. 18 (2005) 19–24. [CrossRef] [Google Scholar]
  39. K.P. Galvin, N.G. Harvey and J.E. Dickinson, Fluidized bed desliming in fine particle flotation – part III flotation of difficult to clean coal. Miner. Eng. 66–68 (2014) 94–101. [CrossRef] [Google Scholar]
  40. H. Gao and M.K. Stenstrom, The influence of wind in secondary settling tanks for wastewater treatment – a computational fluid dynamics study. part II: rectangular secondary settling tanks. Water Environ. Res. 92 (2020) 551–561. [CrossRef] [PubMed] [Google Scholar]
  41. P. Garrido, R. Burgos, F. Concha and R. Bürger, Settling velocities of particulate systems: 13. A simulator for batch and continuous sedimentation of flocculated suspensions. Int. J. Miner. Process. 73 (2004) 131–144. [CrossRef] [Google Scholar]
  42. G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Springer International Publishing (2014). [CrossRef] [Google Scholar]
  43. G.N. Gatica, N. Heuer and S. Meddahi, On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23 (2003) 301–330. [CrossRef] [MathSciNet] [Google Scholar]
  44. G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and Y.D. Sobral, Banach spaces-based analysis of a fully-mixed finite element method for the steady-state model of fluidized beds. Comput. Math. Appl. 84 (2021) 244–276. [CrossRef] [MathSciNet] [Google Scholar]
  45. K. Gustavsson, Mathematical and numerical modeling of 1-D and 2-D consolidation. Ph.D. thesis, KTH Royal Institute of Technology, Sweden (2003). [Google Scholar]
  46. K. Gustavsson and J. Oppelstrup, Consolidation of concentrated suspensions – numerical simulations using a two-phase fluid model. Comput. Visual. Sci. 3 (2000) 39–45. [CrossRef] [Google Scholar]
  47. D. Kleine and B.D. Reddy, Finite element analysis of flows in secondary settling tanks. Int. J. Numer Methods Eng. 64 (2005) 849–876. [CrossRef] [Google Scholar]
  48. M. Latsa, D. Assimacopoulos, A. Stamou and N. Markatos, Two-phase modeling of batch sedimentation. Appl. Math. Model. 23 (1999) 881–897. [CrossRef] [Google Scholar]
  49. H. Laux and T. Ytrehus, Computer simulation and experiments on two-phase flow in an inclined sedimentation vessel. Powder Technol. 94 (1997) 35–49. [CrossRef] [Google Scholar]
  50. D.R. Lester, M. Rudman and P.J. Scales, Macroscopic dynamics of flocculated colloidal suspensions. Chem. Eng. Sci. 65 (2010) 6362–6378. [CrossRef] [Google Scholar]
  51. D.N. Madge, J. Romero and W.L. Strand, Process reagents for the enhanced removal of solids and water from oil sand froth. Miner. Eng. 18 (2005) 159–169. [CrossRef] [Google Scholar]
  52. S.J. McCaffery, L. Elliott and D.B. Ingham, Two-dimensional enhanced sedimentation in inclined fracture channels. Math. Eng. 7 (1998) 97–125. [Google Scholar]
  53. M.S. Nigam, Numerical simulation of buoyant mixture flows. Int. J. Multiphase Flow 29 (2003) 983–1015. [CrossRef] [Google Scholar]
  54. K.V. Parchevsky, Numerical simulation of sedimentation in the presence of 2D compressible convection and reconstruction of the particle-radius distribution function. J. Eng. Math. 41 (2001) 203–219. [CrossRef] [Google Scholar]
  55. R. Rao, L. Mondy, A. Sun and S. Altobelli, A numerical and experimental study of batch sedimentation and viscous resuspension. Int. J. Numer. Methods Fluids 39 (2002) 465–483. [CrossRef] [Google Scholar]
  56. C. Reyes, C.F. Ihle, F. Apaz and L.A. Cisternas, Heat-assisted batch settling of mineral suspensions in inclined containers. Minerals 9 (2019) 228. [CrossRef] [Google Scholar]
  57. U. Schaflinger, Experiments on sedimentation beneath downward-facing inclined walls. Int. J. Multiph. Flow 11 (1985) 189–199. [CrossRef] [Google Scholar]
  58. E.S.G. Shaqfeh and A. Acrivos, The effects of inertia on the buoyancy-driven convection flow in settling vessels having inclined walls. Phys. Fluids 29 (1986) 3935. [CrossRef] [Google Scholar]
  59. E.S.G. Shaqfeh and A. Acrivos, The effects of inertia on the stability of the convective flow in inclined particle settlers. Phys. Fluids 30 (1987) 960. [CrossRef] [Google Scholar]
  60. E.S.G. Shaqfeh and A. Acrivos, Enhanced sedimentation in vessels with inclined walls: experimental observations. Phys. Fluids 30 (1987) 1905. [CrossRef] [Google Scholar]
  61. R. Stephen Sparks, H.E. Huppert, T. Koyaguchi and M.A. Hallworth, Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature 361 (1993) 246–249. [CrossRef] [Google Scholar]
  62. J. Su, L. Wang, Y. Zhang and Z. Gu, A numerical study on influent flow rate variations in a secondary settling tank. Processes 7 (2019) 884. [CrossRef] [Google Scholar]
  63. M. Ungarish, Hydrodynamics of Suspensions. Springer, Berlin Heidelberg (1993). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you