Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2007 - 2040
DOI https://doi.org/10.1051/m2an/2023040
Published online 03 July 2023
  1. I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media Part I: derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. [Google Scholar]
  3. I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717–1736. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Agélas and R. Masson. Convergence of finite volume mpfa o type schemes for heterogeenous anisotropic diffusion problems on general meshes. C.R. Acad. Paris, Ser. I 346 (2008). [Google Scholar]
  5. L. Agélas, D.A. Di Pietro, and J. Droniou. The g method for heterogeneous anisotropic diffusion on general meshes. ESAIM: Math. Model. Numer. Anal. 11 (2010) 597–625. [CrossRef] [EDP Sciences] [Google Scholar]
  6. B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, and A. Russo. Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Babuška, U. Banerjee, and J.E. Osborn. Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12 (2003) 1–125. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Brenner, M. Groza, C. Guichard, and R. Masson. Vertex approximate gradient scheme for hybrid dimensional two-phase darcy flows in fractured porous media. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics. Vol. 78 (2014) 507–515. [Google Scholar]
  9. J.-S. Chen, M. Hillman, and S.-W. Chi. Meshfree methods: progress made after 20 years. J. Eng. Mech. 143 (2017). [Google Scholar]
  10. J. Coatléven. A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes. ESAIM: Math. Model. Numeri. Anal. 51 (2017) 797–824. [CrossRef] [EDP Sciences] [Google Scholar]
  11. J. Coatléven. Basic convergence theory for the network element method. ESAIM: Math. Model. Numer. Anal. 55 (2021) 2503–2533. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. J. Coatléven. Principles of a network element method. J. Comput. Phys. 433 (2021) Article 110197. [CrossRef] [Google Scholar]
  13. J. Coatléven. A network element method for heterogeneous and anisotropic diffusion-reaction problems. J. Comput. Phys. 470 (2022) Article 111597. [Google Scholar]
  14. J. Coatléven. On network and geometry generation for the network element method. preprint, 2022. [Google Scholar]
  15. L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, and A. Russo. Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.A. Di Pietro and J. Droniou. The Hybrid High-Order Method for Polytopal Meshes, Design, Analysis, and Applications. Springer Nature Switzerland (2020). [CrossRef] [Google Scholar]
  17. O. Diyankov. Uncertain grid method for numerical solution of pdes. Technical report, NeurOK Software (2008). [Google Scholar]
  18. J. Droniou. Finite volume schemes for diffusion equations: introduction to and review of modern methods. M3AS 24 (2014) 1575–1619. Special edition “P.D.E. Discretizations on Polygonal Meshes”. [Google Scholar]
  19. J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [Google Scholar]
  20. P. Durand-Riard, L. Salles, M. Ford, G. Caumon, and J. Pellerin. Understanding the evolution of syn-depositional folds: coupling decompaction and 3d sequential restoration. Mari. Pet. Geol. 28 (2011) Art. 1530e1539. [Google Scholar]
  21. R. Eymard, T. Gallouët, and R. Herbin. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C.R. Math. Acad. Sci. Paris 344 (2007) 403–406. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Eymard, T. Gallouët, and R. Herbin. Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3d schemes for diffusive flows in porous media. ESAIM: Math. Model. Numer. Anal. 46 (2011) 265–290. [Google Scholar]
  24. R. Eymard, C. Guichard, R. Herbin, and R. Masson. Vertex-centred discretization of multiphase compositional darcy flows on general meshes. Comput. Geosci. 16 (2012) 987–1005. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Eymard, C. Guichard, R. Herbin, and R. Masson. Vertex centred discretization of two-phase darcy flows on general meshes. ESAIM: Proc. 35 (2012) 59–78. [CrossRef] [EDP Sciences] [Google Scholar]
  26. A. Katz and A. Jameson. A meshless volume scheme. In: Proc. of 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (2009) 2009–3534. [Google Scholar]
  27. A.I. Kauerauf and T. Hantschel. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, Heidelberg (2009). [Google Scholar]
  28. J.M. Melenk. On Approximation in Meshless Methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 65–141. [Google Scholar]
  29. L. Ran, H. Borouchaki, A. Benali, and C. Bennis. Hex-dominant mesh generation for basin modeling with complex geometry. IOP Conf. Ser.: Mater. Sci. Eng. 10 (2010) 012085. [CrossRef] [Google Scholar]
  30. V. Shankar, G.B. Wright, and A.L. Fogelson. An efficient high-order meshless method for advection-diffusion equations on time-varying irregular domains. J. Comput. Phys. 445 (2021) Art. 110633. [Google Scholar]
  31. J. Slak and G. Kosec. On generation of node distributions for meshless pde discretizations. SIAM J. Sci. Comput. 41 (2019) A3202–A3229. [CrossRef] [Google Scholar]
  32. E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press (1970). [Google Scholar]
  33. A. Tertois and J. Mallet. Restoration of complex three-dimensional structural models based on the mathematical geochron framework. In: 81st EAGE Conference and Exhibition 2019. Vol. 2019 (2019) 1–5. [Google Scholar]
  34. N. Trask, P. Bochev, and M. Perego. A conservative, consistent, and scalable mesh-free mimetic method. J. Comput. Phys. 409 (2020) 109–187. [Google Scholar]
  35. N. Trask, M. Perego, and P. Bochev. A high-order staggered meshless method for elliptic problems. SIAM J. Sci. Comput. 39 (2017) 479–502. [Google Scholar]
  36. F. Wellmann and G. Caumon. Chapter one – 3-d structural geological models: Concepts, methods, and uncertainties. In: Vol. 59 of Advances in Geophysics. Elsevier (2018) 1–121. [Google Scholar]
  37. E. Kwan yu Chiu, Q. Wang, R. Hu, and A. Jameson. A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34 (2012) 2896–2916. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you