Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2041 - 2076
DOI https://doi.org/10.1051/m2an/2023047
Published online 03 July 2023
  1. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing 51970 (1970) 207–213. [CrossRef] [Google Scholar]
  2. J.W. Barrett and C.M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309–325. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett and C.M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7 (1987) 283–300. [Google Scholar]
  4. J.H. Bramble and J.T. King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63 (1994) 1–17. [CrossRef] [Google Scholar]
  5. J.H. Bramble and J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. [Google Scholar]
  6. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics. Vol. 15. Springer, Berlin (2008). [Google Scholar]
  7. E. Burman, J. Guzmán, M.A. Sánchez and M. Sarkis, Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems. IMA J. Numer. Anal. 38 (2018) 646–668. [CrossRef] [MathSciNet] [Google Scholar]
  8. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [Google Scholar]
  9. C.-C. Chu, I.G. Graham and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79 (2010) 1915–1955. [CrossRef] [Google Scholar]
  10. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: Math. Model. Numer. Anal. 7 (1973) 33–75. [Google Scholar]
  11. R.L. Foote, Regularity of the distance function. Proc. Amer. Math. Soc. 92 (1984) 153–155. [MathSciNet] [Google Scholar]
  12. S. Frei and T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52 (2014) 2315–2334. [MathSciNet] [Google Scholar]
  13. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, in Classics in Mathematics. Springer-Verlag, Berlin (2001). [Google Scholar]
  14. Y. Gong, B. Li and Z. Li, Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal. 46 (2008) 472–495. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Guo and T. Lin, A group of immersed finite-element spaces for elliptic interface problems. IMA J. Numer. Anal. 39 (2019) 482–511. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Guo, T. Lin and Y. Lin, Error estimates for a partially penalized immersed finite element method for elasticity interface problems. ESAIM: M2AN 54 (2020) 1–24. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. R. Guo, T. Lin and X. Zhang, Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75 (2018) 2002–2016. [Google Scholar]
  18. J. Guzmán, M.A. Sánchez and M. Sarkis, A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73 (2017) 330–365. [Google Scholar]
  19. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
  20. X. He, T. Lin and Y. Lin, Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24 (2008) 1265–1300. [CrossRef] [Google Scholar]
  21. X. He, T. Lin and Y. Lin, The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numer. Methods Partial Differ. Equ. 28 (2012) 312–330. [CrossRef] [Google Scholar]
  22. J. Huang and J. Zou, Some new a priori estimates for second-order elliptic and parabolic interface problems. J. Differ. Equ. 184 (2002) 570–586. [Google Scholar]
  23. J. Huang and J. Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dyn. Syst. Ser. B 7 (2007) 145–170. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Ji, F. Wang, J. Chen and Z. Li, A new parameter free partially penalized immersed finite element and the optimal convergence analysis. Numer. Math. 150 (2022) 1035–1086. [CrossRef] [MathSciNet] [Google Scholar]
  25. D.Y. Kwak, K.T. Wee and K.S. Chang, An analysis of a broken P1-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48 (2010) 2117–2134. [CrossRef] [MathSciNet] [Google Scholar]
  26. Z. Li, The immersed interface method using a finite element formulation. Appl. Numer. Math. 27 (1998) 253–267. [CrossRef] [MathSciNet] [Google Scholar]
  27. Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96 (2003) 61–98. [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Lin, Y. Lin and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53 (2015) 1121–1144. [Google Scholar]
  29. T. Lin, D. Sheen and X. Zhang, A nonconforming immersed finite element method for elliptic interface problems. J. Sci. Comput. 79 (2019) 442–463. [CrossRef] [MathSciNet] [Google Scholar]
  30. Z. Li, T. Lin, Y. Lin and R. Rogers, An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20 (2004) 338–367. [CrossRef] [Google Scholar]
  31. J. Li, J. Markus, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Rannacher and S. Turek, Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differ. Equ. 8 (1992) 97–111. [CrossRef] [Google Scholar]
  33. H. Wu and Y. Xiao, An unfitted hp-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37 (2019) 316–339. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Xu, Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients. J. Xiangtan University 1 (1982) 1–5. [Google Scholar]
  35. X. Zhang, Nonconforming immersed finite element methods for interface problems. Ph.D. Thesis, Virginia Polytechnic Institute and State University (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you