Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 2775 - 2802
DOI https://doi.org/10.1051/m2an/2023013
Published online 14 September 2023
  1. R.A. Adam and J.F. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
  2. M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Num. Anal. 42 (2005) 2320–2341. [CrossRef] [Google Scholar]
  3. B. Aksoylu and Z. Yelter, Robust multigrid preconditioners for cell-centered finite volume discretization of the high-contrast diffusion equation. Comput. Visual. Sci. 13 (2010) 229–245. [CrossRef] [Google Scholar]
  4. B. Aksoylu, I.G. Graham, H. Klie and R. Scheichl, Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems. Comput. Visual. 11 (2008) 319–331. [CrossRef] [Google Scholar]
  5. I. Babuša and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. SIAM Multiscale Model. Simul. 9 (2011) 373–406. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 45 (2007) 1005–1034. [CrossRef] [Google Scholar]
  7. M. Bachmayr and A. Cohen, Kolmogorov widths and low-rank approximations of parametric elliptic PDEs. Math. Comput. 86 (2017) 701–724. [Google Scholar]
  8. M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM:M2AN 51 (2017) 321–339. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J. Beck, F. Nobile, L. Tamellini and R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. Lecture Notes Comput. Sci. Eng. 76 (2010) 43–62. [CrossRef] [Google Scholar]
  10. J. Beck, F. Nobile, L. Tamellini and R. Tempone, Implementation of optimal Galerkin and collocation approximations of PDEs with random coefficients. ESAIM Proc. 33 (2011) 10–21. [CrossRef] [EDP Sciences] [Google Scholar]
  11. J. Beck, F. Nobile, L. Tamellini and R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDES with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. [Google Scholar]
  13. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [Google Scholar]
  14. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Data assimilation in reduced modeling. SIAM/ASA J. Uncertainty Quant. 5 (2017) 1–29. [CrossRef] [Google Scholar]
  15. A. Bonito, A. Cohen, R. DeVore, D. Guignard, P. Jantsch and G. Petrova, Nonlinear methods for model reduction. ESAIM: Math. Modell. Numer. Anal. 55 (2021) 507–531. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parameterized reduced basis. Math. Model. Numer. Anal. 46 (2012) 595–603. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. A. Chatterjee, An introduction to the proper orthogonal decomposition. Curr. Sci. 78 (2000) 539–575. [Google Scholar]
  18. A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [Google Scholar]
  19. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. App. 9 (2011) 11–47. [CrossRef] [Google Scholar]
  20. R. DeVore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces. Constr. Approximation 37 (2013) 455–466. [Google Scholar]
  21. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. SIAM J. Multiscale Model. Simul. 8 (2010) 1461–1483. [CrossRef] [Google Scholar]
  22. B. Haasdonk, Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems, in Model Reduction and Approximation – Theory and Algorithms, edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. SIAM (2017). [Google Scholar]
  23. P. Hanning, A. Malquist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: M2AN 48 (2014) 1331–1349. [CrossRef] [EDP Sciences] [Google Scholar]
  24. V.V. Jikov, S.M. Kozlov and O.A. OIeinik, Homogeneization of Differential Operators and Integral Functionals, Springer (1994). [CrossRef] [Google Scholar]
  25. D. Kouri, Z. Zou and W. Aquino, An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk. Comput. Methods Appl. Mech. Eng. 345 (2019) 302–322. [CrossRef] [Google Scholar]
  26. Y. Maday and B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. SIAM J. Sci. Comput. 35 (2013) A2417–A2441. [Google Scholar]
  27. Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A parametrized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Meth. Eng. 102 (2015) 933–965. [CrossRef] [Google Scholar]
  28. A.T. Patera, J.L. Eftang and E.M. Ronquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. [CrossRef] [MathSciNet] [Google Scholar]
  29. D. Perterseim and R. Scheichl, Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16 (2016) 579–603. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Pinkus, N-widths in Approximation Theory. Springer (1985). [Google Scholar]
  31. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations – application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet] [Google Scholar]
  32. S. Sen, Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numer. Heat Transfer B-Fund. 54 (2008) 369–389. [CrossRef] [Google Scholar]
  33. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970). [Google Scholar]
  34. V. Temlyakov, Nonlinear Kolmogorov widths. Math. Notes 63 (1998) 785–795. [CrossRef] [MathSciNet] [Google Scholar]
  35. H. Tran, C.G. Webster and G. Zhang, Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137 (2017) 451–493. [Google Scholar]
  36. K. Veroy, C. Prudhomme, D.V. Rovas and T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proc. 16th AIAA Computational Fluid Dynamics Conference, Orlando (2003). [Google Scholar]
  37. S. Volkwein, Proper Orthogonal Decomposition: Theory and reduced order modeling. Lecture Notes. University of Konstanz (2013). [Google Scholar]
  38. K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. Am. Inst. Aeronaut. Astronaut. 40 (2022) 2323–2330. [Google Scholar]
  39. A. Zenisek, Extensions from the Sobolev spaces H1 satisfying prescribed Dirichlet boundary conditions. App. Math. 49 (2004) 405–413. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you