Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 2735 - 2774
DOI https://doi.org/10.1051/m2an/2023065
Published online 14 September 2023
  1. C. Acary-Robert, E.D. Fernández-Nieto, G. Narbona-Reina and P. Vigneaux, A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. J. Sci. Comput. 53 (2012) 608–641. [Google Scholar]
  2. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Math. Modell. Numer. Anal. 45 (2011) 169–200. [CrossRef] [EDP Sciences] [Google Scholar]
  3. N.J. Balmforth, R.V. Craster, A.C. Rust and R. Sassi, Viscoplastic flow over an inclined surface. J. Non-Newtonian Fluid Mech. 142 (2007) 219–243. [CrossRef] [Google Scholar]
  4. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. [Google Scholar]
  5. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures App. 17 (1872) 55–108. [Google Scholar]
  6. D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238 (2003) 211–223. [Google Scholar]
  7. M.-O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged Euler system: derivation and properties. Discrete Contin. Dyn. Syst. Ser. B 20 (2015) 961–988. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.-O. Bristeau, C. Guichard, B. Di Martino and J. Sainte-Marie, Layer-averaged Euler and Navier-Stokes equations. Commun. Math. Sci.. Preprint: arXiv:1509.06218 (2017). [Google Scholar]
  9. V. Casulli, A semi-implicit finite difference method for non-hydrostatic free-surface flows. Int. J. Numer. Methods Fluids 30 (1999) 425–440. [CrossRef] [Google Scholar]
  10. G. Chambon, P. Freydier, M. Naaim and J.-P. Vila, Asymptotic expansion of the velocity field within the front of viscoplastic surges: comparison with experiments. J. Fluid Mech. 884 (2020) A43. [CrossRef] [Google Scholar]
  11. A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics. Springer, New York (1993). [CrossRef] [Google Scholar]
  12. P. Coussot, Mudflow Rheology and Dynamics. A.A. Balkema, Rotterdam, Brookfield (1997). [Google Scholar]
  13. A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for natural river hydraulics. Math. Models Methods Appl. Sci. 19 (2009) 387–417. [Google Scholar]
  14. B. Di-Martino, B. Haspot and Y. Penel, Global stability of weak solutions for a multilayer Saint-Venant model with interactions between layers. Nonlinear Anal. 163 (2017) 177–200. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Escalante, E.D. Fernández-Nieto, J. Garres-Díaz, T. Morales de Luna and Y. Penel, Non-hydrostatic layer-averaged approximation of Euler system with enhanced dispersion properties. Comput. Appl. Math. 42 (2023) 177. [CrossRef] [Google Scholar]
  16. C. Escalante and T. Morales de Luna, A general non-hydrostatic hyperbolic formulation for Boussinesq dispersive shallow flows and its numerical approximation. J. Sci. Comput. 83 (2020) 82. [CrossRef] [Google Scholar]
  17. C. Escalante-Sanchez, E.D. Fernandez-Nieto, T. Morales de Luna, Y. Penel and J. Sainte-Marie, Numerical simulations of a dispersive model approximating free-surface Euler equations. J. Sci. Comput. 89 (2021) 1–35. [CrossRef] [Google Scholar]
  18. E.D. Fernández-Nieto, J. Garres-Díaz, A. Mangeney and G. Narbona-Reina, A multilayer shallow model for dry granular flows with the μ(I)-rheology: application to granular collapse on erodible beds. J. Fluid Mech. 798 (2016) 643–681. [CrossRef] [Google Scholar]
  19. E.D. Fernández-Nieto, J. Garres-Díaz, A. Mangeney and G. Narbona-Reina, 2D granular flows with the μ(I) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. 356 (2018) 192–219. [CrossRef] [MathSciNet] [Google Scholar]
  20. E.D. Fernández-Nieto, J. Garres-Díaz and P. Vigneaux, Multilayer models for hydrostatic Herschel-Bulkley viscoplastic flows. Comput. Math. App. 139 (2023) 99–117. [Google Scholar]
  21. E.D. Fernández-Nieto, E.H. Koné and T.C. Rebollo, A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution. J. Sci. Comput. 60 (2013) 408–437. [Google Scholar]
  22. E.D. Fernández-Nieto, P. Noble and J.-P. Vila, Shallow water equations for Non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165 (2010) 712–732. [CrossRef] [Google Scholar]
  23. E.D. Fernández-Nieto, M. Parisot, Y. Penel and J. Sainte-Marie, A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. Commun. Math. Sci. 16 (2018) 1169–1202. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Garres-Díaz, F. Bouchut, E.D. Fernández-Nieto, A. Mangeney and G. Narbona-Reina, Multilayer models for shallow two-phase debris flows with dilatancy effects. J. Comput. Phys. 419 (2020). [Google Scholar]
  25. J. Garres-Díaz, M.J. Castro Díaz, J. Koellermeier and T. Morales de Luna, Shallow water moment models for bedload transport problems. Commun. Comput. Phys. 30 (2021) 903–941. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Garres-Díaz, C. Escalante, T. Morales de Luna and M.J. Castro Díaz, A general vertical decomposition of Euler equations: multilayer-moment models. Appl. Numer. Math. 183 (2023) 236–262. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Garres-Díaz, E.D. Fernández-Nieto, A. Mangeney and T. Morales de Luna, A weakly non-hydrostatic shallow model for dry granular flows. J. Sci. Comput. 86 (2021) 25. [CrossRef] [Google Scholar]
  28. G.D.R. MiDi, On dense granular flows. Eur. Phys. J. E 14 (2004) 341–365. [CrossRef] [PubMed] [Google Scholar]
  29. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. – Ser. B 1 (2001) 89–102. [Google Scholar]
  30. J.M.N.T. Gray and A.N. Edwards, A depth-averaged μ(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755 (2014) 503–534. [Google Scholar]
  31. R. Jackson, The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics. Cambridge University Press, Cambridge (2000). [Google Scholar]
  32. P. Jop, Y. Forterre and O. Pouliquen, A constitutive law for dense granular flows. Nature 441 (2006) 727–730. [NASA ADS] [CrossRef] [Google Scholar]
  33. J.T. Kirby, Boussinesq models and their application to coastal processes across a wide range of scales. J Waterway Port Coastal Ocean Eng. 142 (2016) 03116005. [CrossRef] [Google Scholar]
  34. J. Koellermeier, Derivation and numerical solution of hyperbolic moment equations for rarefied gas flows. Dissertation. RWTH Aachen University, Aachen (2017). [Google Scholar]
  35. J. Koellermeier and M. Rominger, Analysis and numerical simulation of hyperbolic shallow water moment equations. Commun. Comput. Phys. 28 (2020) 1038–1084. [CrossRef] [MathSciNet] [Google Scholar]
  36. J. Kowalski and M. Torrilhon, Moment approximations and model cascades for shallow flow. Commun. Comput. Phys. 25 (2018) 669–702. [Google Scholar]
  37. P.-Y. Lagrée, L. Staron and S. Popinet, The granular column collapse as a continuum: validity of a two-dimensional Navier- Stokes with a (I)-rheology. J. Fluid Mech. 686 (2011) 378–408. [CrossRef] [MathSciNet] [Google Scholar]
  38. D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics. Vol. 188. American Mathematical Society (2013). [Google Scholar]
  39. P.A. Madsen, R. Murray and O.R. Sorensen, A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Eng. 15 (1991) 371–388. [CrossRef] [Google Scholar]
  40. F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. – B/Fluids 26 (2007) 49–63. [CrossRef] [Google Scholar]
  41. A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations. Commun. Part. Differ. Equ. 32 (2007) 431–452. [CrossRef] [Google Scholar]
  42. G. Narbona-Reina and J.D.D. Zabsonré, Existence of global weak solutions for a viscous 2D bilayer Shallow Water model. C. R. Math. 349 (2011) 285–289. [CrossRef] [Google Scholar]
  43. G. Narbona-Reina, J.D.D. Zabsonré, E.D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for Shallow Water equations with viscosity. Numerical validation. Comput. Model. Eng. Sci. 43 (2009) 27–72. [Google Scholar]
  44. T.C. Papanastasiou, Flows of materials with yield. J. Rheol. 31 (1987) 385–404. [CrossRef] [Google Scholar]
  45. C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. [Google Scholar]
  46. D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815–827. [CrossRef] [Google Scholar]
  47. A.F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Inventiones Mathematicae 206 (2016) 935–974. [CrossRef] [MathSciNet] [Google Scholar]
  48. Y. Yamazaki, Z. Kowalik and K.F. Cheung, Depth-integrated, non-hydrostatic model for wave breaking and run-up. Numer. Methods Fluids 61 (2008) 473–497. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you